• Title/Summary/Keyword: Wireless Power Transfer(WPT)

Search Result 135, Processing Time 0.025 seconds

Characteristic Study of Small-sized and Planer Resonator for Mobile Device in Magnetic Wireless Power Transfer (소형 모바일 기기용 공진형 무선전력전송 시스템의 공진기 평면화 및 소형화에 따른 특성 연구)

  • Lee, Hoon-Hee;Jung, Chang-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.16-21
    • /
    • 2017
  • In this paper, a Small-sized and planer resonator design of Magnetic Resonance - Wireless Power Transfer(MR-WPT) were proposed for practical applications of mobile devices, such as a laptop, a smart-phone and a tablet pc. The proposed MR-WPT system were based on four coil MR-WPT and designed as a transmitter part (Tx) and a receiver part (Rx) both are the same shape with the same loop and resonator. There are four different spiral coil type of resonators with variable of line length, width, gap and turns in $50mm{\times}50mm$ size. The both of top and bottom side of substrate(acrylic; ${\varepsilon}_r=2.56$, tan ${\delta}=0.008$) ere used to generate high inductance and capacitance in limited small volume. Loops were designed on the same plane of resonator to reduce their volume, and there are three different size. The proposed MR-WPT system were fabricated with two acrylic substrate plane of Tx and Rx each, the Rx and Tx loops and resonators were fabricated of copper sheets. There are 12 combinations of 3 loops and 4 resonators, each combination were measured to calculate transfer efficiency and resonance frequency in transfer distance from 1cm to 5cm. The measured results, the highest transfer efficiency was about 70%, and average transfer efficiency was 40%, on the resonance frequency was about 6.78 MHz, which is standard band by A4WP. We proposed small-sized and planer resonator of MR-WPT and showed possibility of mobile applications for small devices.

Analysis of Semi-Bridgeless Rectifier in Inductive Power Transfer Systems for Electric Vehicles Considering Reverse Recovery Phenomenon (역회복 현상을 고려한 전기자동차용 IPT 시스템의 Semi-Bridgeless 정류기 분석)

  • Son, Won-Jin;Ann, Sangjoon;Byun, Jongeun;Lee, Jae-Han;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.327-333
    • /
    • 2019
  • This study analyzes the reverse recovery phenomenon of a semi-bridgeless rectifier (SBR) in an inductive power transfer (IPT) system for electric vehicles. Ideally, the reverse recovery phenomenon does not occur in a diode rectifier, however, in practical systems, the reverse recovery phenomenon occurs even when the SBR operates like a diode rectifier due to high operating frequency. Therefore, a practical analysis of operation modes for SBRs is presented in this study, considering the reverse recovery phenomenon, and the requirements for SBR switches are proposed. The analysis results are experimentally verified using a 3.3 [kW] IPT system prototype to which three different types of switches are applied.

Robust and Safe Wireless Power Transfer Technology for Ubiquitous Mobile Devices with Plate Core (평판 코어가 부착된 강인하고 안정한 유비쿼터스 모바일 기기용 무선전력전송 기술)

  • Lee, Eun-Soo;Choi, Su-Yong;Thai, Xuan Van;Rim, Chun-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.558-559
    • /
    • 2013
  • 본 논문에서는 나선형 코일이 장착된 평판코어를 이용한 유비쿼터스 모바일 무선전력전송 (Wireless Power Transfer, WPT) 기술을 제안하였다. 집전장치에 나선형 코일이 부착된 평판코어를 사용함으로써 어떠한 도체가 접근하더라도 코일의 인덕턴스가 거의 변하지 않아 최대전력전달이 가능한 공진 조건을 보장하고, 사용자는 자기장이 일정 유해 수준을 넘지 않는 환경에서 안전하게 모바일기기를 사용할 수 있다. 실험 결과, 평판 코어 앞면에서는 상대적으로 매우 작은 자기장이 발생하였으며, 도체를 집전장치에 접근시킬 경우의 인덕턴스 변화 측정결과 평판 코어를 사용하지 않은 것에 비해 10배 이상 적은 것을 확인하였다.

  • PDF

Time-Domain Analysis of Wireless Power Transfer System Behavior Based on Coupled-Mode Theory

  • Shim, Hyunjin;Nam, Sangwook;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.219-224
    • /
    • 2016
  • In this paper, coupled-mode theory (CMT) is used to obtain a transient solution analytically for a wireless power transfer system (WPTS) when unit energy is applied to one of two resonators. The solutions are compared with those obtained using equivalent circuit-based analysis. The time-domain CMT is accurate only when resonant coils are weakly coupled and have large quality factors, and the reason for this inaccuracy is outlined. Even though the time-domain CMT solution does not describe the WPTS behavior precisely, it is accurate enough to allow for an understanding of the mechanism of energy exchange between two resonators qualitatively. Based on the time-domain CMT solution, the critical coupling coefficient is derived and a criterion is suggested for distinguishing inductive coupling and magnetic resonance coupling of the WPTS.

A Selective Wireless Power Transfer Architecture Using Reconfigurable Multiport Amplifier (재구성 다중포트 전력증폭기를 이용한 선택적 무선 전력 전송 구조)

  • Park, Seung Pyo;Choi, Seung Bum;Lee, Seung Min;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.521-524
    • /
    • 2015
  • This letter presents a selective wireless power transfer architecture using a reconfigurable multi-port amplifier. The proposed wireless power transfer architecture is composed of a phase shifter part controlled by FPGA, two class-E power amplifiers, a four-port power combiner and two coil loads. Depending on the phase control of FPGA, the power ratio of outputs at the two coil loads becomes 1:1, 2:0 and 0:2. The manufactured system has delivered 1W DC power to loads at 125 kHz. The total DC-to-DC conversion efficiency shows more than 40 % including PA efficiency of 79 %.

Optimal Design of Volume Reduction for Capacitive-coupled Wireless Power Transfer System using Leakage-enhanced Transformer (누설집중형 변압기를 이용한 전계결합형 무선전력전송 시스템의 부피저감 최적설계 연구)

  • Choi, Hee-Su;Jeong, Chae-Ho;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.469-475
    • /
    • 2017
  • Using impedance matching techniques as a way to increase system power transferability in capacitive wireless power transmission has been widely investigated in conventional studies. However, these techniques tend to increase the circuit volume and thus counterbalance the advantage of the simplicity in the energy link structure. In this paper, a compact circuit topology with one leakage-enhanced transformer is proposed in order to minimize the circuit volume for the capacitive power transfer system. This topology achieves a reactive compensation, and the system quality factor value can be reduced by the turn ratio. As a result, this topology not only reduces the overall system volume but also minimizes the voltage stress of the link capacitor. An optimal design guideline for the leakage-enhanced transformer is also presented. The advantages of the proposed scheme over the conventional method in terms of power efficiency and circuit volume are revealed through an analytic comparison. The feasibility of applying the new topology is also verified by conducting 50 W hardware tests.

Study on Arrangement of Self-Resonant Coils in Wireless Power Transfer System Based on Magnetic Resonance (자기 공명 무선 전력 전송 시스템에서 공진 코일의 배열에 관한 연구)

  • Kim, Jin-Wook;Ji, Hyeon-Ho;Choi, Yeon-Gyu;Yun, Young-Hyun;Kim, Kwan-Ho;Park, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.564-572
    • /
    • 2010
  • In this paper, characteristics on arrangement of coils in the wireless power transfer system based on magnetic resonance is presented. A helical structure is used for a self-resonant coil. To design a proper self-resonant helical coil, its inductance and capacitance are obtained. Using the finite element method, the self-resonant coil designed is simulated and characteristics of wireless power transfer with various arrangement between Tx and Rx resonant coils is analyzed. For verification, a prototype of a wireless power transfer system based on magnetic resonance is fabricated and efficiency of different arrangement such as both vertical and parallel arrangements is measured. From the measurement, transmission efficiency of 50 % for parallel arrangement is obtained within twice the diameter of the coil while for the vertical arrangement it is measured within one and a half diameter of the coil. Maximum efficiency of 84.25 % is observed at the distance 40 cm from the resonant coil in the case of parallel arrangement.

Resonant Wireless Power Transfer System with High Efficiency using Metamaterial Cover (메타구조 기반의 고효율 공진형 무선전력전송 시스템)

  • Kim, Hyoungjun;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.47-51
    • /
    • 2014
  • In this paper, unit cell and arrayed cover for improving the transfer efficiency of resonant wireless power transfer system is proposed. We used the characteristic of zero refractive index for focusing a magnetic field between the transmitting resonator and receiving resonator. For zero refractive index, we designed the unit cell structure that have a negative value of effective permeability. The size of proposed unit cell based on metamaterial structure is $70mm{\times}70mm{\times}3.2mm$, operating frequency is 13.56 MHz. And, the size of arrayed cover is $400mm{\times}400mm{\times}3.2mm$, is consists of 2-layers. The transfer efficiency of the proposed wireless power transfer system are 94.8 %, 93.2 %, 91.4 %, 90.8 % at 100 mm, 200 mm, 300 mm and 400 mm (distance between transmitting and receiving resonator), respectively. And proposed WPT system has a transfer efficiency high than 90 % over the overall distances.

The Design of Resonator for Miniaturization of Magnetic Resonance Wireless Power Transfer System (자기공진형 무선전력전송 시스템의 소형화를 위한 공진기 설계)

  • Kang, Seok Hyon;Jung, Chang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.163-169
    • /
    • 2016
  • In this paper, we miniaturized the loop and coil in magnetic resonance wireless power transfer(MR-WPT) system for application to the small mobile device. The proposed disk type double coil resonator was designed to cause resonance at 6.87 MHz. It is composed of thin copper on both-side of acrylic substrate structured 2 mm width, 1 mm pitch and 8 turns. The outer radius of spiral coil pattern is 9 cm. And the proposed loop was made of the copper wire 5 mm diameter of cross-section. The size of loop is 10 cm diameter. For resonance at 6.87 MHz, the capacitor with 3,300 pF was connected in series on the loop. We rearranged the resonators and organized several WPT systems which is rearranged by resonators. The highest transfer efficiency of miniaturized WPT system was 35.67 %. This proposed design of spiral double coil will contribute to make resonator smaller for appling small and thin mobile device.

Design of a High Efficiency Resonator for Wireless Power Transfer (무선 전력 전송용 고효율 공진기 설계)

  • Jang, Yo-Han;Kwon, Jae-Soon;Park, Jae-Su;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.820-826
    • /
    • 2011
  • In this paper, an efficiency improvement method in the wireless power transfer system based on magnetic resonance is proposed. A combined helical-spiral structure is adopted for self-resonant coil and source and device coils are designed using circular loop structure. The proposed resonator utilizing combined helical-spiral structure yields 13 % efficiency improvement over that of an existing helical type resonator when the transmitting and receiving coils are separated by 120 mm. In addition, the size can be reduced by 33 % comparing to the previous resonator.