• 제목/요약/키워드: Wireless Information Technology

검색결과 3,266건 처리시간 0.033초

Wireless Channel Identification Algorithm Based on Feature Extraction and BP Neural Network

  • Li, Dengao;Wu, Gang;Zhao, Jumin;Niu, Wenhui;Liu, Qi
    • Journal of Information Processing Systems
    • /
    • 제13권1호
    • /
    • pp.141-151
    • /
    • 2017
  • Effective identification of wireless channel in different scenarios or regions can solve the problems of multipath interference in process of wireless communication. In this paper, different characteristics of wireless channel are extracted based on the arrival time and received signal strength, such as the number of multipath, time delay and delay spread, to establish the feature vector set of wireless channel which is used to train backpropagation (BP) neural network to identify different wireless channels. Experimental results show that the proposed algorithm can accurately identify different wireless channels, and the accuracy can reach 97.59%.

An Improved Entropy Based Sensing by Exploring Phase Information

  • Lee, Haowei;Gu, Junrong;Sohn, Sung-Hwan;Jang, Sung-Jeen;Kim, Jae-Moung
    • 한국통신학회논문지
    • /
    • 제35권9A호
    • /
    • pp.896-905
    • /
    • 2010
  • In this paper, we present a new sensing method based on phase entropy. Entropy is a measurement which quantifies the information content contained in a signal. For the PSK modulation, the information is encoded in the phase of the transmitted signal. By focusing on phase, more information is collected during sensing, which suggests a superior performance. The sensing based on Phase entropy is not limited to PSK signal. We generalize it to PAM signal as well. It is more advantageous to detect the phase. The simulation results have confirmed the excellent performance of this novel sensing algorithm.

Coexistence of OSCR-Based IR-UWB System with IEEE 802.11a WLAN

  • Wu, Weiwei;Huang, Han;Yin, Huarin;Wang, Weidong;Wang, Dong-Jin
    • ETRI Journal
    • /
    • 제28권1호
    • /
    • pp.91-94
    • /
    • 2006
  • Impulse radio (IR) is a competitive candidate for ultra-wideband (UWB) systems. In this letter, we evaluated the coexistence of an IR-UWB system based on an orthogonal sinusoidal correlation receiver (OSCR) with an IEEE 802.11a WLAN through a detailed simulation. The coexistence performance of the two systems is characterized in terms of the receiver's bit-error rates. Then, some approaches to interference mitigation are discussed.

  • PDF

Independent Component Analysis Based MIMO Transceiver With Improved Performance In Time Varying Wireless Channels

  • Uddin, Zahoor;Ahmad, Ayaz;Iqbal, Muhammad;Shah, Nadir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2435-2453
    • /
    • 2015
  • Independent component analysis (ICA) is a signal processing technique used for un-mixing of the mixed recorded signals. In wireless communication, ICA is mainly used in multiple input multiple output (MIMO) systems. Most of the existing work regarding the ICA applications in MIMO systems assumed static or quasi static wireless channels. Performance of the ICA algorithms degrades in case of time varying wireless channels and is further degraded if the data block lengths are reduced to get the quasi stationarity. In this paper, we propose an ICA based MIMO transceiver that performs well in time varying wireless channels, even for smaller data blocks. Simulation is performed over quadrature amplitude modulated (QAM) signals. Results show that the proposed transceiver system outperforms the existing MIMO system utilizing the FastICA and the OBAICA algorithms in both the transceiver systems for time varying wireless channels. Performance improvement is observed for different data blocks lengths and signal to noise ratios (SNRs).

Proportional-Fair Downlink Resource Allocation in OFDMA-Based Relay Networks

  • Liu, Chang;Qin, Xiaowei;Zhang, Sihai;Zhou, Wuyang
    • Journal of Communications and Networks
    • /
    • 제13권6호
    • /
    • pp.633-638
    • /
    • 2011
  • In this paper, we consider resource allocation with proportional fairness in the downlink orthogonal frequency division multiple access relay networks, in which relay nodes operate in decode-and-forward mode. A joint optimization problem is formulated for relay selection, subcarrier assignment and power allocation. Since the formulated primal problem is nondeterministic polynomial time-complete, we make continuous relaxation and solve the dual problem by Lagrangian dual decomposition method. A near-optimal solution is obtained using Karush-Kuhn-Tucker conditions. Simulation results show that the proposed algorithm provides superior system throughput and much better fairness among users comparing with a heuristic algorithm.

무선 기술의 사용이 분산 집단의사결정에 미치는 영향 연구 (The Effects of Wireless Technology on Distributed Group Decision-Making Practices)

  • 권오병;김태경;김충련
    • Asia pacific journal of information systems
    • /
    • 제12권2호
    • /
    • pp.119-135
    • /
    • 2002
  • Those making decisions are no longer located in the same workplace. Wireless technology appears promising as a method to promote group performance in circumstances dependent on time, but not member proximity. However, the success of wireless technology in group decision-making situations has not yet been proven. This paper seeks to learn whether wireless technology affects the performance of group decision-making tasks that should be resolved urgently and/or sources of idea are disconnected with on-line network.

Optimal Strategies for Cooperative Spectrum Sensing in Multiple Cross-over Cognitive Radio Networks

  • Hu, Hang;Xu, Youyun;Liu, Zhiwen;Li, Ning;Zhang, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권12호
    • /
    • pp.3061-3080
    • /
    • 2012
  • To improve the sensing performance, cooperation among secondary users can be utilized to collect space diversity. In this paper, we focus on the optimization of cooperative spectrum sensing in which multiple cognitive users efficiently cooperate to achieve superior detection accuracy with minimum sensing error probability in multiple cross-over cognitive radio networks. The analysis focuses on two fusion strategies: soft information fusion and hard information fusion. Under soft information fusion, the optimal threshold of the energy detector is derived in both noncooperative single-user and cooperative multiuser sensing scenarios. Under hard information fusion, the optimal randomized rule and the optimal decision threshold are derived according to the rule of minimum sensing error (MSE). MSE rule shows better performance on improving the final false alarm and detection probability simultaneously. By simulations, our proposed strategy optimizes the sensing performance for each cognitive user which is randomly distributed in the multiple cross-over cognitive radio networks.

유효영상 획득을 위한 무인기 영상감시의 실시간 위치분석과 무선전송 기술에 관한 연구 (A Study on Real-Time Position Analysis and Wireless Transmission Technology for Effective Acquisition of Video Recording Information in UAV Video Surveillance)

  • 김환철;이창석;최정훈
    • 한국멀티미디어학회논문지
    • /
    • 제18권9호
    • /
    • pp.1047-1057
    • /
    • 2015
  • In this paper, we propose an effective wireless transmission technology, under poor wireless transmission channel surroundings caused by speedy flying, that are able to transmit high quality video recording information and surveillance data via accessing to various wireless networking services architecture such as One-on-One, Many-on-One, One-on-Many, Over the Horizon. The Real-Time Position Analysis(RAPA) method is also suggested to provide more meaningful video information of shooting area. The suggested wireless transmission technology and RAPA can make remote control of UAV's flight route to get valuable topography information. Because of the benefit to get both of video information and GPS data of shooting area simultaneously, the result of study can be applied to various application sphere including UAV that requires high speed wireless transmission.