• Title/Summary/Keyword: Wireless Energy Transmission

Search Result 650, Processing Time 0.026 seconds

A Probability-based Clustering Protocol for Data Dissemination in Wireless Sensor Networks (무선 센서 네트워크에서 확률 기반의 클러스터링을 이용한 계층적 데이터 전송 프로토콜)

  • Kim, Moon-Seong;Cho, Sang-Hun;Lim, Hyung-Jin;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • One of the major challenges of designing a dissemination protocol for Wireless Sensor Networks(WSNs) is energy efficiency. Recently, this issue has received much attention from the research community, and SPMS, which outperforms the well-known protocol SPIN, specially is a representative protocol. In addition, one of many characters of SPMS is the use of the shortest path to minimize the energy consumption. However, since it repeatedly uses the same path as the shortest path, the maximizing of the network lifetime is impossible, though it reduces the energy consumption. In this paper, we propose a dissemination protocol using probability-based clustering which guarantees energy-efficient data transmission and maximizes network lifetime. The proposed protocol solves the network lifetime problem by a novel probability function, which is related to the residual energy and the transmission radius between nodes. The simulation results show that it guarantees energy-efficient transmission and moreover increases the network lifetime by approximately 78% than that of SPMS.

  • PDF

Efficient Data Transmission Scheme for Underwater Wireless Sensor Networks (수중 센서 네트워크를 위한 효율적인 데이터 전송 기법)

  • Park, Hyun-Hoon;Park, Jin-Ho;Lee, Jong-Geun;Kim, Sung-Un
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.43-44
    • /
    • 2007
  • The Underwater Wireless Sensor Network (UWSN) consists of sensor nodes equipped with a small battery of limited energy resource. Hence, the energy efficiency is a key design issue that needs to be addressed in order to improve the lifetime of the network. In this paper, we use a hexagon tessellation with and ideal cell size to deploy the underwater sensor nodes for the UWSN and propose an enhanced hybrid transmission method that considers the load balancing once the data transmission occurs.

  • PDF

A Brief Overview of Wireless Power Transfer Techniques

  • Kshatri, Dinesh Baniya;Shrestha, Surendra;Shrestha, Bhanu
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.1-5
    • /
    • 2015
  • The necessity to distribute energy wirelessly has been spurred by the tremendous growth in the use of portable devices. Mobile devices have become ubiquitous and the circuits within them have been optimized to consume extremely low amounts of power. Such portable electronic sets are in constant use and the frequent need to recharge them; using conventional wired mechanisms have hindered the mobility of users. Wireless transmission of energy to power-up devices has been proposed since the days of Tesla and since then many theories and methods have been invented. This paper discusses some of those techniques briefly.

Retransmission with Transmission Quantity Allocation for Energy Harvesting Wireless Sensor Networks

  • Gun-Hee Kim;Ikjune Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.175-182
    • /
    • 2024
  • In wireless sensor networks, batteries limit lifespan, and heavy data transmission around the sink causes the hotspot problem. To address this, data collection amounts are allocated to child nodes to limit transmission. However, this approach has issues with nodes far from the sink having excessive energy and failing to transmit the allocated amount due to data transmission errors. This paper proposes a method to prevent sensor data loss through error recovery via retransmission. The method ensures that each node's retransmission volume stays within its allocated data amount and energy limits, using excess energy for error recovery. Simulations show that this technique effectively recovers data transmission errors, collects data, minimizes energy depletion around the sink, and increases data collection rates.

Stable Message Transmission Protocol Considering Remaining Energy of Nodes on Wireless Networks (무선네트워크에서 노드의 에너지를 고려한 종단간 안정성 있는 메시지 전송 프로토콜)

  • Duong, Mai Dinh;Kim, Myung-Kyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1215-1223
    • /
    • 2014
  • In multi-hop wireless networks, a message transmission path is set up on demand by a route discovery step, where a shortest path is used in general. The shortest path, however, normally uses the nodes near the center area, which causes a high traffic load in that area and reduces the message transmission reliability. We propose a stable routing protocol considering the remaining energy of nodes. Our protocol uses ETX as a link performance estimator and tries to avoid the nodes with smaller energy. By doing this, we can reduce the route failure probability and packet loss. We have evaluated the performance of the proposed protocol using QualNet and compared with AODV and MRFR protocols. The simulation result shows that our protocol has a similar performance as MRFR in terms of end-to-end message reception ratio, average message delay and delay jitter, but outperforms MRFR in terms of traffic load distribution.

TASL: A Traffic-Adapted Sleep/Listening MAC Protocol for Wireless Sensor Network

  • Yang, Yuan;Zhen, Fu;Lee, Tae-Seok;Park, Myong-Soon
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.39-43
    • /
    • 2006
  • In this paper, we proposed TASL-MAC, a medium-access control (MAC) protocol for wireless sensor networks. In wireless sensor networks, sensor nodes are usually deployed in a special environment, are assigned with long-term work, and are supported by a limited battery. As such, reducing the energy consumption becomes the primary concern with regard to wireless sensor networks. At the same time, reducing the latency in multi-hop data transmission is also very important. In the existing research, sensor nodes are expected to be switched to the sleep mode in order to reduce energy consumption. However, the existing proposals tended to assign the sensors with a fixed Sleep/Listening schedule, which causes unnecessary idle listening problems and conspicuous transmission latency due to the diversity of the traffic-load in the network. TASL-MAC is designed to dynamically adjust the duty listening time based on traffic load. This protocol enables the node with a proper data transfer rate to satisfy the application's requirements. Meanwhile, it can lead to much greater power efficiency by prolonging the nodes' sleeping time when the traffic. We evaluate our implementation of TASL-MAC in NS-2. The evaluation result indicates that our proposal could explicitly reduce packet delivery latency, and that it could also significantly prolong the lifetime of the entire network when traffic is low.

TLF: Two-level Filter for Querying Extreme Values in Sensor Networks

  • Meng, Min;Yang, Jie;Niu, Yu;Lee, Young-Koo;Jeong, Byeong-Soo;Lee, Sung-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.870-872
    • /
    • 2007
  • Sensor networks have been widely applied for data collection. Due to the energy limitation of the sensor nodes and the most energy consuming data transmission, we should allocate as much work as possible to the sensors, such as data compression and aggregation, to reduce data transmission and save energy. Querying extreme values is a general query type in wireless sensor networks. In this paper, we propose a novel querying method called Two-Level Filter (TLF) for querying extreme values in wireless sensor networks. We first divide the whole sensor network into domains using the Distributed Data Aggregation Model (DDAM). The sensor nodes report their data to the cluster heads using push method. The advantages of two-level filter lie in two aspects. When querying extreme values, the number of pull operations has the lower boundary. And the query results are less affected by the topology changes of the wireless sensor network. Through this method, the sensors preprocess the data to share the burden of the base station and it combines push and pull to be more energy efficient.

  • PDF

Yellow-Light TCP: Energy-Saving Protocol for Mobile Data Transmission (Yellow-Light TCP: 모바일 데이터 전송을 위한 에너지 절감형 프로토콜)

  • Choi, Won-Jun;Ramneek, Ramneek;Seok, Woo-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.478-490
    • /
    • 2015
  • Abundant data has been generated over the internet as the arrival of information age. To share the information, Wired, wireless network are required to transmit the data. Especially, In the wireless network which is using mobile device based on battery, energy consumption is growing due to uploading, downloading the abundant data on mobile device. In order to solve the problem, This paper addresses the protocol of the modified TCP congestion control that is being used for the most network protocol to save energy.

Optimization of Energy Consumption in the Mobile Cloud Systems

  • Su, Pan;Shengping, Wang;Weiwei, Zhou;Shengmei, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4044-4062
    • /
    • 2016
  • We investigate the optimization of energy consumption in Mobile Cloud environment in this paper. In order to optimize the energy consumed by the CPUs in mobile devices, we put forward using the asymptotic time complexity (ATC) method to distinguish the computational complexities of the applications when they are executed in mobile devices. We propose a multi-scale scheme to quantize the channel gain and provide an improved dynamic transmission scheduling algorithm when offloading the applications to the cloud center, which has been proved to be helpful for reducing the mobile devices energy consumption. We give the energy estimation methods in both mobile execution model and cloud execution model. The numerical results suggest that energy consumed by the mobile devices can be remarkably saved with our proposed multi-scale scheme. Moreover, the results can be used as a guideline for the mobile devices to choose whether executing the application locally or offloading it to the cloud center.

Adaptive Data Aggregation and Compression Scheme for Wireless Sensor Networks with Energy-Harvesting Nodes

  • Jeong, Semi;Kim, Hyeok;Noh, Dong Kun;Yoon, Ikjune
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.115-122
    • /
    • 2017
  • In this paper, we propose an adaptive data aggregation and compression scheme for wireless sensor networks with energy-harvesting nodes, which increases the amount of data arrived at the sink node by efficient use of the harvested energy. In energy-harvesting wireless sensor networks, sensor nodes can have more than necessary energy because they harvest energy from environments continuously. In the proposed scheme, when a node judges that there is surplus energy by estimating its residual energy, the node compresses and transmits the aggregated data so far. Conversely, if the residual energy is estimated to be depleted, the node turns off its transceiver and collects only its own sensory data to reduce its energy consumption. As a result, this scheme increases the amount of data collected at the sink node by preventing the blackout of relay nodes and facilitating data transmission. Through simulation, we show that the proposed scheme suppresses the occurrence of blackout nodes and collect the largest amount of data at the sink node compared to previous schemes.