• Title/Summary/Keyword: Wireless Power Transfer

Search Result 512, Processing Time 0.03 seconds

Power Transmission Determined by the Mutual Impedance and the Transducer Power Gain in the Near Field Region

  • Kim, Che-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.152-155
    • /
    • 2011
  • This paper describes the role of mutual impedance and the transducer power gain which comes from key parameters to determine the amount of wireless power especially in a near-field environment. These two key parameters are applied to the two configurations; one is a dipole-dipole, and the other is a dipole-metal plate-loop configuration. Discussions are given on the achievable maximum power transfer between the sender and the receiver affected by the matching and the pass blockage.

A Study on the Effect of Resonant Coil Size and Load Resistance on the Transmission Efficiency of Magnetic Resonance Wireless Power Transfer System (공진 코일의 크기와 부하 저항이 자계 공명 무선 전력 전송 장치의 전달 효율에 주는 영향에 관한 연구)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.45-51
    • /
    • 2012
  • In this paper, the wireless power transfer system using the magnetic resonance was designed and the effect of resonant coil radius and load resistance to this system was analyzed by the circuit analysis method. As a result, the calculated transmitted-power is similar to measured one, and the coil size has a small effect to the coupling coefficients in the resonant frequency band. In addition, the fact that the calculated transmitted-power according to the source frequency is similar to measured one confirms that the circuit analysis methode in this paper is valid. The input side transmission efficiency ${\eta}_i$ including only the loss in the power transfer circuit is almost 90[%] with the large coil in the 10[cm] transfer distance, and 65[%] with the small coil in 1[cm]. The source side transmission efficiency ${\eta}_s$ is 30~40[%] at both coil when load resistance below 4.7[${\Omega}$] has been connected. Considering that the maximum ${\eta}_s$ is 50[%], this is valid in the practical applications.

Investigation of Single-Input Multiple-Output Wireless Power Transfer Systems Based on Optimization of Receiver Loads for Maximum Efficiencies

  • Kim, Sejin;Hwang, Sungyoun;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.145-153
    • /
    • 2018
  • In this paper, the efficiency of single-input multiple-output (SIMO) wireless power transfer systems is examined. Closed-form solutions for the receiver loads that maximize either the total efficiency or the efficiency for a specific receiver are derived. They are validated with the solutions obtained using genetic algorithm (GA) optimization. The optimum load values required to maximize the total efficiency are found to be identical for all the receivers. Alternatively, the loads of receivers can be adjusted to deliver power selectively to a receiver of interest. The total efficiency is not significantly affected by this selective power distribution. A SIMO system is fabricated and tested; the measured efficiency matches closely with the efficiency obtained from the theory.

Study on the Design of High Efficient Class-E Power Amplifier and Resonant Coils for High Efficient Wireless Power Transfer System (고효율 무선 전력 전송을 위한 고효율 E급 전력 증폭기 및 공진 코일 설계에 관한 연구)

  • Youn, Choong-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.935-940
    • /
    • 2016
  • Recently, wireless power transmission system is gradually extended to technology in various fields such as lighting field, electric vehicles and smartphones wireless charging system. The largest of the two elements for high transmission efficiency of the wireless power transmission system are resonant coils and power amplifiers. In this paper, in order to build a high efficient wireless power transmission system, we introduce the resonance coil manufacturing method and high efficiency power amplifier design method that operates at 6.78MHz.

A Novel Receiver Sensing Scheme for Capacitive Power Transfer System (전계결합 무선전력전송의 수신부 감지 방법)

  • Jeong, Chae-Ho;Im, Hwi-Yeol;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.62-65
    • /
    • 2019
  • Wireless power transfer systems require an algorithm to determine the presence of the target object for mitigating standby power and safety issues. Although many schemes that sense various external objects have been actively proposed for inductive power transfer systems, not many studies on capacitive power transfer systems have been conducted compared with those on inductive power transfer systems. This study proposes a target object detection algorithm by monitoring the capacitance in transmitter-side electrodes without additional pressure sensors or distance sensors. The proposed algorithm determines the presence of a target object by monitoring the change in capacitance in transmitter-side electrodes using the step pulse of the microcontroller unit. The algorithm is verified by two step processes. First, the performance in capacitance measurement is compared with that of an LCR meter. Then, the verification is conducted in a 5-W capacitive power transfer hardware. Experimental result shows that the interelectrode capacitance increases by 6 times when the target object is fully aligned. Thus, the proposed scheme can successfully detect the presence of the target object.

Practical Bifurcation Criteria considering Inductive Power Pad Losses in Wireless Power Transfer Systems

  • Kim, Minkook;Lee, Jae-Woo;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.173-181
    • /
    • 2017
  • In this paper, the bifurcation criteria for inductive power transfer (IPT) systems is suggested considering the inductive power pad losses. The bifurcation criteria for series-series (SS) and series-parallel (SP) topologies are derived in terms of the main parameters of the IPT system. For deriving precise criteria, power pad resistance is obtained by copper loss calculation and core loss analysis. Utilizing the suggested criteria, possibility of bifurcation occurrence can be predicted in the design process. In order to verify the proposed criteria, 50 W IPT laboratory prototype is fabricated and the feasibilities of the switching frequency and AC load resistance shift to escape from bifurcation are identified.

Design of Wireless Power Transfer System for Railway Application

  • Hwang, Kiwon;Kim, Seonghwan;Kim, Seongkyu;Chun, Yangbae;Ahn, Seungyoung
    • International Journal of Railway
    • /
    • v.5 no.4
    • /
    • pp.167-174
    • /
    • 2012
  • As wireless power transfer (WPT) technologies emerge in a wide range of applications including public transportation, many expect that applying the technology to the current railway systems will bring positive effects to current railway systems. In this paper, we introduce design methodology of a WPT system for railway application. Fundamental principles of magnetic fields and a WPT circuit are first analyzed, and advantages and efficiency of a possible train system are discussed. It then examines other significant factors such as performance requirements and EMC criteria to design a wireless train system.

Power Stage Design for a Surface Wireless Power Transmission System using a Coupled Electric Field (전계결합을 이용한 면대면 무선 에너지 전송회로 개발)

  • Choi, Sung-Jin;Kim, Se-Yeong;Choi, Byung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.143-148
    • /
    • 2014
  • Conventional wireless power transfer methods based on coupled magnetic fields need a complex winding structure on the surface of the energy transfer and shows poor efficiency near metal objects due to the eddy current effect. In this study, to mitigate these problems, we investigate an electric field-coupled power transmission system, which is less prone to metal object problems and EMI. Because of the fundamental physical limit in the size of link capacitances, a half-bridge converter with an impedance matching transformer is proposed and the design procedure is derived to provide a soft-switching scheme. Hardware implementation shows that the proposed scheme with a pair of 10cm by 10cm copper plate can power a 1.4W USB FAN in a separation of 0.2mm by using insulating paper when driven by 227 kHz gate pulse.

Wireless Power Charging System Capable of Soft-Switching Operation Even in Wide Air Gaps (넓은 공극범위에서 소프트스위칭 동작하는 무선전력 충전시스템)

  • Yu-Jin, Moon;Jeong-Won, Woo;Eun-Soo, Kim;In-Gab, Hwang;Jong-Seob, Won;Sung-Soo, Kang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.515-525
    • /
    • 2022
  • The wireless power transfer (WPT) charging system for AGV depends highly on the coupling conditions due to air gap variation. To attain stable output power with high transfer efficiency under various coupling conditions, a single-stage, DC-DC converter that operates with robustness to changes in air gaps is proposed for the WPT system. The proposed converter is capable of soft switching under the set input voltage (Vin: 380 VDC), load conditions (0-1 kW), and air gap changes (30-70 mm). In addition, a wide output voltage range (Vo: 39-54 VDC) can be controlled by varying the link voltage due to the phase control at a fixed switching frequency. Experimental results are verified using a prototype of a 1 kW wireless power charging system.