• Title/Summary/Keyword: Wire to Board Connector

Search Result 4, Processing Time 0.019 seconds

The Separation Behaviors from Assemble Conditions for Pitch 1.25mm Level Wire to Board Connector (피치 1.25mm 급 Wire to Board Connector 에서 조립상태로부터 분리거동에 관한 연구)

  • Heo, Young-Moo;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In this study, the modification structure design of insulation displacement connector developed was considered for simplification of assembly process. The modified connector consisted terminal, wafer and fitting nails. The separation behavior under locking condition for pitch 1.25mm wire to board connector was measured and the apparatus for the test was made. The maximum restraining force was measured about 4.5kgf that was bigger value than the specification limit. And the pulling force of a wire was also indicated about 2.3kgf.

A Study on the Bend Deformation Cause Analysis of CAE Applied Wire to Board Connectors (압접 커넥터 CAE 적용 휨 변형 원인 분석에 관한 연구)

  • Jeon, Yong-Jun;Shin, Kwang-Ho;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.19-25
    • /
    • 2016
  • Connectors are very important components that transmit electric signals to different parts. It must maintain intensity of the connector to prevent defects from impact and maintain contact to transmit electric signals. Most of the external parts of the connector, which act as the main framework, are formed by injection molding. However, bend deformation occurs for injection molded products due to the residual stress left inside the product after product molding. When the bend deformation is large, it does not come into complete contact when being assembled with other parts, which leads to connector contact intensity not being properly maintained. In result, the main role of the connector, which is to transmit electric signals, cannot be performed. In order to address this problem, this study conducted bend deformation cause analysis through bend deformation analysis to predict and prevent bend deformation of housings and wafers, which are injection molded products of pressure welded connectors that are normally applied in compact mobile and display products. Bend deformation analysis was carried out by checking the charging time, pressure distribution and temperature distribution through wire to board connector wafer and housing injection molding analysis. Based on the results of the bend deformation analysis results, the cause of the bend deformation was analyzed through deformation resulting from disproportional cooling, deformation resulting from disproportional contraction, and deformation resulting from ingredient orientation. In result, it was judged that the effects for bend deformation were biggest due to disproportional contraction for both the pressure welded connector wafer and housing.

Development of a Dipstick Gage Type Small Engine oil Deterioration Detection Sensor (딥스틱게이지형 소형 엔진열화감지센서 개발)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.77-84
    • /
    • 2013
  • A small engine-oil-deterioration detection sensor was developed and installed at the tip of a dipstick gage. The sensor part was manufactured using printed circuit board (PCB) manufacturing technology. A set of sensor covers was installed in order to protect the sensor and realize good signal stability. The small engine-oil-deterioration detection sensor system comprised a dual sensor having etched copper electrodes coated with gold and ceramic, a flexible PCB (FPCB) acting as electric wire, and a dummy PCB with only a lock connector. The sensor can easily be installed by insertion through the guide tube of a dipstick gage. Thus, a driver can easily handle it without further installation equipment. The sensor can determine the level of deterioration in the engine oil by estimating the corresponding dielectric constant of the engine oil.

Analysis of the Risk of Heat Generation due to Bolt Loosening in Terminal Block Connector Parts (볼트풀림에 의한 터미널 블록의 접속부 발열 위험성 분석)

  • Yeon, Yeong-Mo;Kim, Seung-Hee
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.67-75
    • /
    • 2020
  • In this study, the risk of heat generation due to normal and overload currents that vary with the abnormal loosening angle of wire-connecting bolts were identified. The risks were analyzed based on the thermal characteristics to minimize the carbonization accidents of terminal blocks inside distribution panels typically used in industrial sites. We applied a method for measuring the heating temperature and temperature variations in the terminal blocks in real-time by installing a resistance temperature detector sensor board in the terminal block. The experimental results showed that the terminal block model with a low-rated current exhibited a higher heating temperature, thus, confirming the need to select the terminal block capacity based on load currents. Additionally, the higher the rated current of the terminal block with a high-rated current and the higher the degree of loosening, the faster the carbonization point. Such heating temperature monitoring enabled real-time thermal temperature measurement and a step-by-step risk level setting through thermal analysis. The results of the measurement and analysis of carbonization risks can provide a theoretical basis for further research regarding the risk of fire due to carbonization. Furthermore, the deterioration measurement method using the temperature sensor board developed in this study is widely applicable to prevent fires caused by poor electrical contact as well as risk-level management.