• Title/Summary/Keyword: Winter crop cultivation

Search Result 171, Processing Time 0.039 seconds

Cover Crop Effects of Winter Rye (Secale cereale L.) on Soil Characteristics and Conservation in Potato (Solanum tuberosum L.) Slope Field (경사밭 감자(Solanum tuberosum L.) 재배 시 휴한기 호밀(Secale cereal L.) 재배에 따른 토양 특성 및 토양 보전 효과)

  • Bak, Gyeryeong;Lee, Jeong-Tae
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1015-1025
    • /
    • 2021
  • Our research work aimed to evaluate cover crop effects of winter rye on soil characteristics, soil conservation, and yield productivities on potato fields with 15% slope during a fallowed period. There were two controls of bared field without any cultivation and conventional potato cultivation without winter rye. Potato cultivation increased soil pH, organic matter, available phosphate, and exchangeable cation regardless of cover crop cultivation. Sub-soil, particularly, all components of soil chemical properties showed higher value in winter rye cultivation than conventional cultivation. Higher soil density was observed on cover crop cultivation than conventional cultivation resulting from root residues of the cover crop both topsoil and subsoil. Cover crop residues positively affected plant growth and reduced the amount of soil erosion by holding the soil. Although severe soil erosion was seen in conventional cultivation, winter rye cultivation declined soil erosion by 47% during the fallow period on potato slope fields. Distinct soil bacterial communities were detected among treatments and some OTU(Operational Taxonomic Unit)s showed significantly higher abundance in winter rye treatment. Total yield and commercial rate demonstrated no significant differences while higher tuber phosphate, K+, and Mg2+ contents were observed in winter rye cultivation.

Estimation of Paddy CH4 Emissions through Drone-Image-Based Identification of Paddy Rice Straw Application & Winter Crop Cultivation (Drone 영상을 이용한 논 필지 볏짚 환원-동계 재배 확인 및 CH4 배출량 산정)

  • Jang, Seongju;Park, Jinseok;Hong, Rokgi;Hong, Joopyo;Kwon, Chaelyn;Song, Inhong
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.3
    • /
    • pp.21-33
    • /
    • 2021
  • Rice straw management and winter crop cultivation are crucial components for the accurate estimation of paddy methane emissions. Field-based extensive investigation of paddy organic matter management requires enormous efforts however it becomes more feasible as drone technology advances. The objectives of this study were to identify paddy fields of straw application and winter crop cultivation using drone images and to apply for the estimation of yearly methane emission. Total 35 sites of over 150ha in area were selected nationwide as the study areas. Drone images of the study sites were taken twice during summer and winter in 2018 through 2019: Summer images were used to identify paddy cultivation areas, while winter images for straw and winter crop practices. Drone-image-based identification results were used to estimate paddy methane emission and compared with conventional method. As the result, mean areas for paddy, straw application and winter crop cultivation were 118.9ha, 12.0ha, and 11.3ha, respectively. Overall rice straw application rate were greater in Gyeonggi-do(20%) and Chungcheongnam-do(12%), while winter crop cultivation was greatest in Gyeongsangnam-do(30%) and Jeolla-do(27%). Yearly mean methane emission was estimated to be 226.2kg CH4/ha/yr in this study and about 32% less when compared to 331.8kg CH4/ha/yr estimated with the conventional method. This was primarily because of the lower rice straw application rate observed in this study, which was less than quarter the rate of 55.62% used for the conventional method. This indicates the necessity to use more accurate statistics of rice straw application as well as winter crop practices into paddy methane emission estimation. Thus it is recommended to further study to link drone technology with satellite image analysis in order to identify organic management practices at a paddy field level over extensive agricultural area.

Classification of Summer Paddy and Winter Cropping Fields Using Sentinel-2 Images (Sentinel-2 위성영상을 이용한 하계 논벼와 동계작물 재배 필지 분류 및 정확도 평가)

  • Hong, Joo-Pyo;Jang, Seong-Ju;Park, Jin-Seok;Shin, Hyung-Jin;Song, In-Hong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.51-63
    • /
    • 2022
  • Up-to-date statistics of crop cultivation status is essential for farm land management planning and the advancement in remote sensing technology allows for rapid update of farming information. The objective of this study was to develop a classification model of rice paddy or winter crop fields based on NDWI, NDVI, and HSV indices using Sentinel-2 satellite images. The 18 locations in central Korea were selected as target areas and photographed once for each during summer and winter with a eBee drone to identify ground truth crop cultivation. The NDWI was used to classify summer paddy fields, while the NDVI and HSV were used and compared in identification of winter crop cultivation areas. The summer paddy field classification with the criteria of -0.195

Effect of Winter Crop Cultivation on Soil Organic Carbon and Physico-chemical Properties Under Different Rice-forage Cropping Systems in Paddy Soil

  • Yun, Sun-Gang;Lee, Chang-Hoon;Ko, Byong-Gu;Park, Seong-Jin;Kim, Myung-Sook;Kim, Ki-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.335-340
    • /
    • 2016
  • Soil organic carbon plays an important role on soil physico-chemical properties and crop yields in paddy soil. However, there is little information on the soil organic carbon under different forage cultivation during winter season in rice paddy. In this study, we investigated the soil organic carbon and physico-chemical properties in 87 fields of paddy soil cultivated with Barley, rye, and Italian ryegrass (IRG) as animal feedstock during winter season. Organic carbon was 12.9, 14.3, and $16.9g\;C\;kg^{-1}$ in soil with barley, rye, and IRG cultivation, respectively. Among rice-forage cultivation systems, the rice+IRG cropping system was 19.5% higher than in the mono-rice cultivation. Bulk density ranged from 1.17 to $1.28g\;cm^{-3}$ irrespective of cropping systems, and had strongly negative correlation with the soil organic carbon in the rice+IRG cropping system. Carbon storage in rice+IRG cropping systems was average $29.6Mg\;ha^{-1}$ at 15 cm of soil depth, which was 20.4 and 10.3% higher than those of barley and rye cultivation. Increasing carbon storage in paddy soil contributed to the fertility for following rice cultivation. This results indicated that IRG cultivation during winter season could be an alternative and promising way to enhance soil organic carbon content and fertility of paddy soil.

Difference of Agricultural Characteristics and Quality with Fertilizer Types in Wheat Cultivation (밑거름 종류에 따른 밀의 농업적 형질 및 품질 차이)

  • Kim, Hag-Sin;Kim, Young-Jin;Kim, Kyong-Hyun;Park, Hyung-Ho;Kang, Chon-Sik;Kim, Kyung-Ho;Hyun, Jong-Nae;Kim, Kee-Jong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • This study was carried out to establish the optimum organic fertilization and microbial compost on wheat cultivation in order to reduce the use of chemical fertilizers and improve the quality of wheat. The tests resulted in a yield of organic fertilization of 2~6% lower than the yield of standard 4.16 Ton/ha (a yield more than that of microbial compost). The recession was not statistically significant. The trial which involved organic fertilizer that had a yield of 800 kg/ha and microbial compost which had a yield of 2,000 kg/ha resulted in 96% yield of standard trial. The quality of flour in the manure was 50% less during the trial and was not making a good result. In protein content and SDS-sedimentation volume, standard trial had the highest yield in test trial (standard > miccompost > organic fertilization). However, Ash content was not statistically significant.

Effects of different covering material on stable winter survival management with edible leaf in ramie (Boehmeria nivea L.).

  • Kim, Myeong Seok;An, Ho Sub;Kim, Gil Ja;Kim, Yong Soon;Choi, Jin Gyung;Kim, Dong Kwan;Park, Heung Gyu;Kim, Hyun Woo;Kim, Seong Il
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.226-226
    • /
    • 2017
  • This study was to evaluate methods to high quality food ramie rice cake, thereby increasing farm income. This study investigated the effects of different covering material on stable winter survival management with edible leaf in Ramie(Boehmeria nivea L.). The method of winter survival with covering material were conducted under three condition compose to Non covering, Rice straw cutting covered with 500kg.10a-1, Rice husks covered with 1,000kg.10a-1(covered 4~5 cm thickness in the soil surface). Method of application were standard application(N-P-K-Compost applied at 27-9-27-600kg.10a-1. Compost and fused phosphate applied at 100% of basal fertilizer in March 25. 20% of top dressing were four times application in March 25 - October 5. Planting year were March 15, 2011. Plants were spaced 60 cm apart in rows 25 cm apart with open cultivation. According to non covering < Rice husks covered with 1,000kg.10a-1 < Rice straw cutting covered with 500kg.10a-1 cultivation this order, aerial part as a result were plenty amount of growth. Sprout time and winter survival rates was uncovering control plot compared to 2 - 5 days quickly, 45-57% highly by rice husks and rice straw covering. Green leaf yields is untreated control plot (12,44 kg.10a-1) compared to rice husks covering 7% higher, and rice straw covering increased to 18% of the most.

  • PDF

Studies on cropping system for year-round forage crops production

  • Kang, Heonil;Lee, Donghyun;Han, Sangcheol;Choi, Insoo;Yun, Eulsoo;Lee, Jongki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.333-333
    • /
    • 2017
  • This study was conducted to establish of cropping system for year-round forage crops production in east-southern part of Korea and investigated their productivity and feed values. Cropping systems were tested in experiment using oat (cv. Highspeed and Darkhorse) in spring and autumn season, corn (cv. Kwangpyeongok) and sorghum (ss-450) in summer season and rye (cv. Gogu) and triticale (cv. Joseong) in winter season. Considering the forage productivity and feed value such as acid detergent fiber (ADF), neutral detergent fiber (NDF) and total digestive nutrients (TDN), this result suggest that three cropping system for year-round forage crops production. The combinations with triticale (winter), corn or sorghum (summer) and oat (autumn) were would be suitable ones. And also the combinations with rye (winter), corn or sorghum (summer) and oat (autumn) were would be suitable. If forage crops cultivation was started in spring season, the combinations with oat (spring), oat (autumn), triticale or rye (winter), corn or sorghum (summer) and oat (autumn) were would be appropriable. For the more suitable cropping system, we are proceeding on verification experiment of year-round forage crops.

  • PDF

Effect of Winter Rye Cultivation to Improve Soil Fertility and Crop production in Alpine Upland in Korea (동계호밀재배가 고랭지 밭토양의 비옥도 증진에 미치는 영향)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Joo, Jin-Ho;Lee, Jeong-Tae;Ahn, Jae-Hoon;Park, Chol-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.300-305
    • /
    • 2007
  • Soil erosion is one of the most serious problems in alpine upland in Korea. Soil fertility has continuously decreased due to serious soil erosion. To increase soil fertility, new sources of organic matter should be inputted. Therefore, the objectives of this research were to select winter cover crop as new sources of organic matter and to investigate the effect of winter cover crop on soil property changes, major crop productivity (Chinese cabbage, potato) production in highland, and disease occurrence with different cropping systems. Among 17 candidates for winter coverage crop, rye was most suitable due to it's soil covering rate, and over-wintering rate. The optimum sowing period for rye ranged from late August to late September. Soil porosity and organic matter content increased with rye cultivation. Rye cultivation during winter increased amounts of crop (both Chinese cabbage and potato) productivity up to 8%. There was little difference on amount of crop productivity depending on cropping systems such as monoculture (Chinese cabbage or potato) and Chinese cabbage-potato rotation.

Analysis of Relationship between Meteorological Factors and Suitable Cultivation Areas of Korean Rye Cultivar (국내 육성 호밀품종의 재배적지와 기상요인과의 관계 분석)

  • Jung-Gi Rye;Ik-Hwan Jo;Jin-Jin Kim;Ouk-Kyu Han
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.75-87
    • /
    • 2023
  • This research was conducted to analyze the cultivation performance and meteorological data of winter rye in Suwon, Gyeonggi Province, and Daegu for 11 years. The objective was to compare the growth and yield of domestically cultivated Korean rye cultivar "Gogu" and identify the factors influencing them, to determine suitable cultivation areas for Korean rye cultivar in the country. The results of the study showed that both Daegu and Suwon regions possess favorable climatic conditions for winter rye cultivation, with Suwon exhibiting a superior moisture supply compared to Daegu. Furthermore, the analysis of climate suitability revealed that rainfall days and precipitation were significant factors affecting rye cultivation. Through correlation and principal component analysis, the research evaluated the interrelationship between climate, cultivation factors, and winter rye crop performance, as well as identified variations among winter rye cultivation regions. This study provides valuable insights and information for winter rye cultivation in the country, thereby assisting in the decision-making process for selecting optimal cultivation areas.