• 제목/요약/키워드: Winter Precipitation

검색결과 318건 처리시간 0.036초

도시지역에 대한 환경용수의 계절전망 기법 개발 및 평가 (Development and Assessment of Environmental Water Seasonal Outlook Method for the Urban Area)

  • 소재민;김정배;배덕효
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.67-76
    • /
    • 2018
  • There are 34 mega-cities with a population of more than 10 million in the world. One of the highly populated cities in the world is Seoul in South Korea. Seoul receives $1,140million\;m^3/year$ for domestic water, $2million\;m^3/year$ for agricultural water and $6million\;m^3/year$ for industrial water from multi-purpose dams. The maintenance water used for water conservation, ecosystem protection and landscape preservation is $158million\;m^3/year$, which is supplied from natural precipitation. Recently, the use of the other water for preservation of water quality and ecosystem protection in urban areas is increasing. The objectives of this study is to develop the seasonal forecast method of environmental water in urban areas (Seoul, Daejeon, Gwangju, Busan) and to evaluate its predictability. In order to estimate the seasonal outlook information of environmental water from Land Surface Model (LSM), we used the observation weather data of Automated Synoptic Observing System (ASOS) sites, forecast and hind cast data of GloSea5. In the past 30 years (1985 ~ 2014), precipitation, natural runoff and Urban Environmental Water Index (UEI) were analyzed in the 4 urban areas. We calculated the seasonal outlook values of the UEI based on GloSea5 for 2015 year and compared it to UEI based on observed data. The seasonal outlook of UEI in urban areas presented high predictability in the spring, autumn and winter. Studies have depicted that the proposed UEI will be useful for evaluating urban environmental water and the predictability of UEI using GloSea5 forecast data is likely to be high in the order of autumn, winter, spring and summer.

활멸치의 집약적 생산수단에 관한 연구 -III (Study on the Intensive Catching Method of Anchovy for Live Bait-III Relation Between Variation of Sea Condition and Catch of Anchovy in the Southern Coast of Korea)

  • 한영호
    • 수산해양기술연구
    • /
    • 제15권1호
    • /
    • pp.23-33
    • /
    • 1979
  • 한국 연안에서는 연간 5~8만m/t정도의 멸치가 어획되고 있으나 주 어장은 경남 일원을 중심으로 남해안이다. 따라서 남해안의 어황변동을 예보할 수 있으면서 어업경영의 합리화에 크게 이바지 할 수 있을 것이고, 그에 따라 황멸치의 수급 계획 수립에도 크게 도움이 될 것이다. 여기서 먼저 1971~77년 7년간의 수온, 부유생물, 강수량과 열수지를 조사, 계산하고 그 해 봄철의 강수량을 조사하면 그 해의해황이 예측될 수 있고 그에 따라 멸치의 어황도 예보할 수 있을 것으로 기대된다

  • PDF

CMIP5 모델에서 모의되는 지구온난화에 따른 21세기 말 저위도 대기 순환의 변화 (Changes in the Low Latitude Atmospheric Circulation at the End of the 21st Century Simulated by CMIP5 Models under Global Warming)

  • 정유림;최다희;백희정;조천호
    • 대기
    • /
    • 제23권4호
    • /
    • pp.377-387
    • /
    • 2013
  • Projections of changes in the low latitude atmospheric circulation under global warming are investigated using the results of the CMIP5 ensemble mean. For this purpose, 30-yr periods for the present day (1971~2000) and the end of the $21^{st}$ century (2071~2100) according to the RCP emission scenarios are compared. The wintertime subtropical jet is projected to strengthen on the upper side of the jet due to increase in meridional temperature gradient induced by warming in the tropical upper-troposphere and cooling in the stratosphere except for the RCP2.6. It is also found that a strengthening of the upper side of the wintertime subtropical jet in the RCP2.6 due to tropical upper-tropospheric warmings. Model-based projection shows a weakening of the mean intensity of the Hadley cell, an upward shift of cell, and poleward shift of the Hadley circulation for the winter cell in both hemispheres. A weakening of the Walker circulation, which is one of the most robust atmospheric responses to global warming, is also projected. These results are consistent with findings in the previous studies based on CMIP3 data sets. A weakening of the Walker circulation is accompanied with decrease (increase) in precipitation over the Indo-Pacific warm pool region (the equatorial central and east Pacific). In addition, model simulation shows a decrease in precipitation over subtropical regions where the descending branch of the winter Hadley cell in both hemispheres is strengthened.

기후변화에 따른 도당천 유역 미래 물순환율 평가 (Assessment of Future Water Circulation Rate in Dodang Watershed under Climate Change)

  • 곽지혜;황순호;전상민;김석현;최순군;강문성
    • 한국농공학회논문집
    • /
    • 제62권4호
    • /
    • pp.99-110
    • /
    • 2020
  • The objective of this study is to analyze the trend of changes in the water circulation rates under climate change by adopting the concept of WCR defined by the Ministry of Environment. With the need for sound water circulation recovery, the MOE proposed the idea of WCR as (1-direct flow/precipitation). The guideline for calculating WCR suggests the SCS method, which is only suitable for short term rainfall events. However, climate change, which affects WCR significantly, is a global phenomenon and happens gradually over a long period. Therefore, long-term trends in WCRs should also be considered when analyzing changes in WCR due to climate change. RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios were used to simulate future runoff. SWAT (Soil and Water Assessment Tool) was run under the future daily data from GCMs (General Circulation Models) after the calibration. In 2085s, monthly WCR decreased by 4.2-9.9% and 3.3-8.7% in April and October. However, the WCR in the winter increased as the precipitation during the winter decreased compared to the baseline. In the aspect of yearly WCR, the value showed a decrease in most GCMs in the mid-long future. In particular, in the case of the RCP 8.5 scenario, the WCR reduced 2-3 times rapidly than the RCP 4.5 scenario. The WCR of 2055s did not significantly differ from the 2025s, but the value declined by 0.6-2.8% at 2085s.

Climate Change Impacts in Natural Resources and Livestock in Mongolia Climate

  • Batima, P.;Natsagdorj, L.;Bayarbaatar, L..;Bolortsetseg, B.;Natsagsuren, N.;Erdenetsetseg, B.
    • 한국제4기학회지
    • /
    • 제18권2호통권23호
    • /
    • pp.103-104
    • /
    • 2004
  • This paper discuss some results of observed changes of meteorological elements as temperature, precipitation and some extreme indexes in Mongolia. Mongolia is one of the largest landlocked countries in the world. The climate is characterized by a long lasting cold winter, dry and hot summer, low precipitation, high temperature fluctuation and relatively high number of sunny days per year. During last 60 years the annual mean air temperature has risen $1.66^{\circ}C$. Intensive warming of > $2^{\circ}C$ was observed at higher altitudes of high mountains when warming of < $1^{\circ}C$ was observed the Domod steppe and the Gobi Desert. Heat Wave Duration have statistically significant risen trend with increaded number of days by 8-18 at significance level of 95-99.9% depending on geography and Cold Wave Duration have shortened by 13.3 days significance level of 95-99%. In general, by the amount of precipitation, Mongolia falls in semi-arid and arid region. It is 300-350 mm in the high mountain regions while it is only 50-150 mm in Gobi Desert regions. The changes of annual precipitation have very localized character i.e.decreasing at one site and increasing at a sit nearby. Annual precipitation decreased by 30-90 mm in the northern-central region and increased by 2-60 mm in the western and eastern region. The magnitude of alteration changes in precipitation regardless increasing or decreasing is 5-25%. A trends, significant at the level of 90%, found where changes are more than 40 mm or more than 15% of annual mean value. Moreover, the soil moisture resources was decreased in the last 40 years. Specially, moisture contents of the top soil have decreased 2 times(N. Natsagsuren, 2002). Months of June and July in Mongolia is the year that moisture is not inhibiting vegetation growth. Unfortunately, its also found that moisture in this time tends to decrease. Increased temperature, decreased precipitation and soil moisture are most likely resulted in occurences of more intense drought spells that have taken place during the recent years. Intimately, these changes have considerable impact on livestock in Mongolia.

  • PDF

미국 남부지역의 도시화로 인한 강수변화 연구에 대한 경향면 분석의 적용 (Application of trend surface analysis(TSA) to a precipitation modification study over urban areas in the southern United States of America)

  • ;;최영은
    • 대한지리학회지
    • /
    • 제30권4호
    • /
    • pp.333-351
    • /
    • 1995
  • 미국 남서부 지역의 5개 도시 즉 텍사스 주의 Houston, Dallas 및 San Antonio, 루이지애나주의 New Orleans 그리고 테네시주의 Memphis에서 강수의 자연적 경향과 강수에 미치는 도시의 영향을 파악하기 위하여 경향면 분석 (Trend surface analysis, TSA)을 시도하였다. 분석기간은 1961년부터 1990년까지 3O 년간이다. 사용한 자료는 월강수량, 계절강수량 그리고 연강수량이다. Houston을 제외한 4개 도시에서는 겨울철과 봄철에 비하여 여름철과 가을철에 보다 큰 경향값을 보였다. 월별 분 석에서는 11월부터 3월까지 기간에 4월부터 10월까지 기간에 보다 현저한 경향을 나타냈다. 자연적 강수의 변동을 제거한 후의 잔차도를 보면, Houston, Dallas, San Antonio등지에서 는 여름철에 도시와 풍하지역에서 양의 잔차값을 보이고 있는데 이러한 현상은 다른 계절에 비하여 여름철에 도시의 영향으로 인한 강수가 더 많아지고 있음을 의미하는 것이다. Memphis와 New Orleans의 여름철 잔차도에서는 도시의 영향에 기인하는 강수의 현저한 증가를 발견할 수 없었다. New Orleans의 6월과 Memphis의 7월 잔차도에서는 도시에서는 양의 값을 보였으나 다른 도시에 비해 그 규모가 크지 않았다.

  • PDF

기후변화에 따른 농업용수공급패턴의 변화로 인한 이수안전도변화분석 (Water Supply Reliability Revaluation For Agricultural Water Supply Pattern Changes Considering Climate Changes)

  • 최영돈;안종서;신현석;차형선
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.273-277
    • /
    • 2010
  • This research was performed to examine changes in the timing of the growth of crops along with changes in temperatures due tochanges and to analyze the change of water-supply-reliability by adding an analysis of the change of agricultural water supply patterns in the basin area of Miryang dam in Korea. Had-CM3 model from U.K. was the tool adopted for the GCM model, a stochastic, daily-meteorology-generation-model called LARS-WG was alsoused for downscaling and for the climate change scenario (A1B) which represents Korea's circumstances best. First of all, to calculate changes in the timing of the growth of crops during this period, the theory of GDD was applied. Except for the period of transplanting and irrigation, there was no choice but to find the proper accumulated temperature by comparing actual temperature data and the supply pattern of agricultural use due to limited temperature data. As a result, proper temperatures were found for each period. $400^{\circ}C$ for the preparation period of a nursery bed, $704^{\circ}C$ for a nursery bed's period, $1,295^{\circ}C$ for the rice-transplanting period, $1,744^{\circ}C$ for starting irrigation, and $3,972^{\circ}C$ for finishing irrigation. To analyze future agricultural supply patter changes, the A1B scenario of Had-CM3 model was adopted, and then Downscaling was conducted adopting LARS-WG. To conduct a stochastical analysis of LARS-WG, climate scenarios were generated for the periods 2011~2030, 2046~2065, 2080~2099 using the data of precipitation andMax/Min temperatures collected from the Miryang gauging station. Upon reviewing the result of the analysis of accumulated temperatures from 2011~2030, the supply of agricultural water was 10 days earlier, and in the next periods-2046~2065, 2080~2099 it also was 10 days earlier. With these results, it is assumed that the supply of agricultural water should be about 1 month ahead of the existing schedule to meet the proper growth conditions of crops. From the results of the agricultural water supply patterns should be altered, but the reliability of water supply becomes more favorable, which is caused from the high precipitation change. Furthermore, since the unique characteristics of precipitation in Korea, which has high precipitation in the summer, water-supply-reliability has a pattern that the precipitation in September could significantly affect the chances of drought the following winter and spring. It could be more risky to make changes to the constant supply pattern under these conditions due to the high uncertainty of future precipitation. Although, several researches have been conducted concerning climate changes, in the field of water-industry, those researches have been solely dependent on precipitation. Even so, with the high uncertainty of precipitation, it is difficult for it to be reflected in government policy. Therefore, research in the field of water-supply-patterns or evapotranspiration according to the temperature or other diverse effects, which has higher reliability on anticipation, could obtain more reliable results in the future and that could result in water-resource maintenance to be safer and a more advantageous environment.

  • PDF

Impact of abnormal climate events on the production of Italian ryegrass as a season in Korea

  • Kim, Moonju;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • 제63권1호
    • /
    • pp.77-90
    • /
    • 2021
  • This study aimed to assess the impact of abnormal climate events on the production of Italian ryegrass (IRG), such as autumn low-temperature, severe winter cold and spring droughts in the central inland, southern inland and southern coastal regions. Seasonal climatic variables, including temperature, precipitation, wind speed, relative humidity, and sunshine duration, were used to set the abnormal climate events using principal component analysis, and the abnormal climate events were distinguished from normal using Euclidean-distance cluster analysis. Furthermore, to estimate the impact caused by abnormal climate events, the dry matter yield (DMY) of IRG between abnormal and normal climate events was compared using a t-test with 5% significance level. As a result, the impact to the DMY of IRG by abnormal climate events in the central inland of Korea was significantly large in order of severe winter cold, spring drought, and autumn low-temperature. In the southern inland regions, severe winter cold was also the most serious abnormal event. These results indicate that the severe cold is critical to IRG in inland regions. Meanwhile, in the southern coastal regions, where severe cold weather is rare, the spring drought was the most serious abnormal climate event. In particular, since 2005, the frequency of spring droughts has tended to increase. In consideration of the trend and frequency of spring drought events, it is likely that drought becomes a NEW NORMAL during spring in Korea. This study was carried out to assess the impact of seasonal abnormal climate events on the DMY of IRG, and it can be helpful to make a guideline for its vulnerability.

Changes in the Winter-Spring Center Timing over Upper Indus River Basin in Pakistan

  • Ali, Shahid;Kam, Jonghun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.372-372
    • /
    • 2021
  • The agriculture sector plays a vital role in the economy of Pakistan by contributing about 20% of the GDP and 42% of the labor force. Rivers from the top of Himalayas are the major water resources for this agriculture sector. Recent reports have found that Pakistan is one of the most vulnerable country to climate change that can cause water scarcity which is a big challenge to the communities. Previous studies have investigated the impact of climate change on the trend of streamflow, but the understanding of seasonal change in the regional hydrologic regimes remained limited. Therefore, a better understanding of the seasonal hydrologic change will help cope with the future water scarcity issue. In this study, we used the daily stream flow data for four major river basins of Pakistan (Chenab, Indus, Jhelum and Kabul) over 1962 - 2019. Utilizing these daily river discharge data, we calculated the winter-spring center time and the summer-autumn center times. In this study Winter-spring center time (WSCT) is defined as the day of the calendar year during which half of the total six months (Jan-Jun) discharge volume was exceeded. Results show that the four river basins experienced a statistically significant decreasing trend of WSCT, that is the center time keeps coming earlier compared to the past. We further used the Climate Research Unit (CRU) climate data comprising of the average temperature and precipitation for the four basins and found that the increasing average temperature value causes the early melting of the snow covers and glaciers that resulted in the decreasing of 1st center time value by 4 to 8 days. The findings of this study informs an alarming situation for the agriculture sector specifically.

  • PDF

우리나라 일별 강수발생의 확률과 주기성의 특성 (On the Characteristics of Probability and Periodicity for the Daily Precipitaty Occureonce in Korea)

  • 문승의;김백조;하창환
    • 한국환경과학회지
    • /
    • 제6권2호
    • /
    • pp.95-106
    • /
    • 1997
  • The characteristics on the transtion probabilities and periodicity for the daily precipitation occurrence in Korean peninsula are investigated by applying the Markov chain properties to daily precipitation occurrence. In order to examine the responses of Markov Chain properties to the applied period and their magnitudes, three cases (Case A: 1956~ 1985 at 14 stations, Case B: 1965~ 1994 at 14 stations, and Case C: 1985~ 1994 at 63 stations) are considered In this study. The transition probabilities from wet day to wet day for all cases are about 0.50 and in summer, especially July, are higher. In addition, considering them in each station we can find that they are the highest at Ullung-do and lowest at Inchon for all cases. The annual equilibrium probabilities of a wet day appear 0.31 In Case A, 0.30 Case B, and 0. 29 Case C, respectively. This may explain that as the data-period used becomes shorter, the higher the equilibrium probability is. The seasonal distributions of equilibrium probabilities are appeared the lowest(0.23~0.28) in winter and the highest(more than 0.39) in spring and monthly in .truly and in October, repectively. The annual mean wet duration for all cases is 2.04 days in Case A, 1.99 Case B, and 1.89 Case C, repectively. The weather cycle obtained from the annual mean wet and dry duration is 6.54~6.59 days, which are closely associated with the movement of synoptic systems. And the statistical tests show that the transitions of daily precipitation occurrence for all cases may have two-state first Markov chain property, being the stationarity in time and heterogeneity in space.

  • PDF