• 제목/요약/키워드: Winkler-Pasternak elastic foundation

검색결과 137건 처리시간 0.026초

Free vibration of FG-GPLRC conical panel on elastic foundation

  • Eyvazian, Arameh;Musharavati, Farayi;Tarlochan, Faris;Pasharavesh, Abdolreza;Rajak, Dipen Kumar;Husain, Mohammed Bakr;Tran, Tron Nhan
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.1-18
    • /
    • 2020
  • Present research is aimed to investigate the free vibration behavior of functionally graded (FG) nanocomposite conical panel reinforced by graphene platelets (GPLs) on the elastic foundation. Winkler-Pasternak elastic foundation surrounds the mentioned shell. For each ply, graphaene platelets are randomly oriented and uniformly dispersed in an isotropic matrix. It is assumed that the Volume fraction of GPLs reainforcement could be different from layer to layer according to a functionally graded pattern. The effective elastic modulus of the conical panel is estimated according to the modified Halpin-Tsai rule in this manuscript. Cone is modeled based on the first order shear deformation theory (FSDT). Hamilton's principle and generalized differential quadrature (GDQ) approach are also used to derive and discrete the equations of motion. Some evaluations are provided to compare the natural frequencies between current study and some experimental and theoretical investigations. After validation of the accuracy of the present formulation and method, natural frequencies and the corresponding mode shapes of FG-GPLRC conical panel are developed for different parameters such as boundary conditions, GPLs volume fraction, types of functionally graded and elastic foundation coefficients.

Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1033-1048
    • /
    • 2016
  • An analytical solution based on the neutral surface concept is developed to study the free vibration behavior of simply supported functionally graded plate reposed on the elastic foundation by taking into account the effect of transverse shear deformations. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain obtained by using a new refined shear deformation theory. The foundation is described by the Winkler-Pasternak model. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power law formulation, and the Poisson ratio is held constant. The equation of motion for FG rectangular plates resting on elastic foundation is obtained through Hamilton's principle. Numerical examples are provided to show the effect of foundation stiffness parameters presented for thick to thin plates and for various values of the gradient index, aspect and side to thickness ratio. It was found that the proposed theory predicts the fundamental frequencies very well with the ones available in literature.

A dynamic foundation model for the analysis of plates on foundation to a moving oscillator

  • Nguyen, Phuoc T.;Pham, Trung D.;Hoang, Hoa P.
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1019-1035
    • /
    • 2016
  • This paper proposes a new foundation model called "Dynamic foundation model" for the dynamic analysis of plates on foundation subjected to a moving oscillator. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameters of foundation during vibration. By using finite element method and the principle of dynamic balance, the governing equation of motion of the plate travelled by the oscillator is derived and solved by the Newmark's time integration procedure. The accuracy of the algorithm is verified by comparing the numerical results with the other numerical results in the literature. Also, the effects of mass and damping ratio of system components, stiffness of suspension system, velocity of moving oscillator, and dynamic foundation parameters on dynamic responses are investigated. A very important role of these factors will be shown in the dynamic behavior of the plate.

Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations

  • Merazka, Bouzid;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Selim, Mahmoud M.;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.631-643
    • /
    • 2021
  • The aim of this work is to study the hygro-thermo-mechanical bending responses of simply supported FG plate resting on a Winkler-Pasternak elastic foundation. The effect transverse shear strains is taken into account in which the zero transverse shear stress condition on the top and bottom surfaces of the plate is ensured without using any shear correction factors. The developed model contains only four unknowns variable which is reduced compared to other HSDTs models. The material properties of FG-plate are supposed to vary across the thickness of the plate according to power-law mixture. The differential governing equations are derived based on the virtual working principle. Numerical outcomes of bending analysis of FG plates under hygro-thermo-mechanical loads are performed and compared with those available in the literature. The effects of the temperature, moisture concentration, elastic foundation parameters, shear deformation, geometrical parameters, and power-law-index on the dimensionless deflections, axial and transverse shear stresses of the FG-plate are presented and discussed.

Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations

  • Djamel Eddine Lafi;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Mohamed Bourada;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • 제89권2호
    • /
    • pp.103-119
    • /
    • 2024
  • The present research investigates the thermodynamically bending behavior of FG sandwich plates, laying on the Winkler/Pasternak/Kerr foundation with various boundary conditions, subjected to harmonic thermal load varying through thickness. The supposed FG sandwich plate has three layers with a ceramic core. The constituents' volume fractions of the lower and upper faces vary gradually in the direction of the FG sandwich plate thickness. This variation is performed according to various models: a Power law, Trigonometric, Viola-Tornabene, and the Exponential model, while the core is constantly homogeneous. The displacement field considered in the current work contains integral terms and fewer unknowns than other theories in the literature. The corresponding equations of motion are derived based on Hamilton's principle. The impact of the distribution model, scheme, aspect ratio, side-to-thickness ratio, boundary conditions, and elastic foundations on thermodynamic bending are examined in this study. The deflections obtained for the sandwich plate without elastic foundations have the lowest values for all boundary conditions. In addition, the minimum deflection values are obtained for the exponential volume fraction law model. The sandwich plate's non-dimensional deflection increases as the aspect ratio increases for all distribution models.

Mechanical and thermal stability investigation of functionally graded plates resting on visco-Pasternak foundation

  • Samira Hassiba Tagrara;Mohamed Mehdi hamri;Mahmoud Mohamed Selim Saleh;Mofareh Hassan Ghazwani;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.839-856
    • /
    • 2023
  • This work presents a simple four-unknown refined integral plate theory for mechanical and thermal buckling behaviors of functionally graded (FG) plates resting on Visco-Pasternak foundations. The proposed refined high order shear deformation theory has a new displacement field which includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with even less than the conventional theory of first shear strain (FSDT). Governing equations are deduced from the principle of minimum total potential energy and a Navier type analytical solution is adopted for simply supported FG plates. The Visco-Pasternak foundations is considered by adding the impact of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The accuracy of the present model is demonstrated by comparing the computed results with those available in the literature. Some numerical results are presented to show the impact of material index, elastic foundation type, and damping coefficient of the foundation, on the mechanical and thermal buckling behaviors of FG plates.

Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads

  • Behravan Rad, A.
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.139-161
    • /
    • 2012
  • In this paper, the static behavior of bi-directional functionally graded (FG) non-uniform thickness circular plate resting on quadratically gradient elastic foundations (Winkler-Pasternak type) subjected to axisymmetric transverse and in-plane shear loads is carried out by using state-space and differential quadrature methods. The governing state equations are derived based on 3D theory of elasticity, and assuming the material properties of the plate except the Poisson's ratio varies continuously throughout the thickness and radius directions in accordance with the exponential and power law distributions. The stresses and displacements distribution are obtained by solving state equations. The effects of foundation stiffnesses, material heterogeneity indices, geometric parameters and loads ratio on the deformation and stress distributions of the FG circular plate are investigated in numerical examples. The results are reported for the first time and the new results can be used as a benchmark solution for future researches.

탄성지반 위에 놓인 낮은 아치의 최저차 대칭 및 역대칭 고유진동수 방정식(구조 및 재료 \circled1) (Lowest Symmetrical and Antisymmetrical Natural Frequency Equations of Shallow Arches on Elastic Foundations)

  • 이병구;박광규;오상진;서종원
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.213-218
    • /
    • 2000
  • This paper deals with the free vibrations of shallow arches resting on elastic foundations. Foundations are assumed to follow the hypothesis proposed by Pasternak. The governing differential equation is derived for the in-plane free vibration of linearly elastic arches of uniform stiffness and constant mass per unit length. Sinusoidal arches with hinged-hinged and clamped-clamped end constraints are considered in analysis. The frequency equations (lowest symmetical and antisymmetrical natural frequency equations) are obtained by Galerkin's method. The effects of arch rise, Winkler foundation parameter and shear foundation parameter on the lowest two natural frequencies are investigated.

  • PDF

Combined effects of material properties and boundary conditions on the large deflection bending analysis of circular plates on a nonlinear elastic foundation

  • Altekin, Murat
    • Computers and Concrete
    • /
    • 제25권6호
    • /
    • pp.537-549
    • /
    • 2020
  • Geometrically nonlinear axisymmetric bending analysis of shear deformable circular plates on a nonlinear three-parameter elastic foundation was made. Plates ranging from "thin" to "moderately thick" were investigated for three types of material: isotropic, transversely isotropic, and orthotropic. The differential equations were discretized by means of the finite difference method (FDM) and the differential quadrature method (DQM). The Newton-Raphson method was applied to find the solution. A parametric investigation using seven unknowns per node was presented. The novelty of the paper is that detailed numerical simulations were made to highlight the combined effects of the material properties and the boundary conditions on (i) the deflection, (ii) the stress resultants, and (iii) the external load. The formulation was verified through comparison studies. It was observed that the results are highly influenced from the boundary conditions, and from the material properties.

Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tahar, Benabdallah
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.447-462
    • /
    • 2019
  • This present paper concerned with the analytic modelling for vibration of the functionally graded (FG) plates resting on non-variable and variable two parameter elastic foundation, based on two-dimensional elasticity using higher shear deformation theory. Our present theory has four unknown, which mean that have less than other higher order and lower theory, and we denote do not require the factor of correction like the first shear deformation theory. The indeterminate integral are introduced in the fields of displacement, it is allowed to reduce the number from five unknown to only four variables. The elastic foundations are assumed a classical model of Winkler-Pasternak with uniform distribution stiffness of the Winkler coefficient (kw), or it is with variables distribution coefficient (kw). The variable's stiffness of elastic foundation is supposed linear, parabolic and trigonometry along the length of functionally plate. The properties of the FG plates vary according to the thickness, following a simple distribution of the power law in terms of volume fractions of the constituents of the material. The equations of motions for natural frequency of the functionally graded plates resting on variables elastic foundation are derived using Hamilton principal. The government equations are resolved, with respect boundary condition for simply supported FG plate, employing Navier series solution. The extensive validation with other works found in the literature and our results are present in this work to demonstrate the efficient and accuracy of this analytic model to predict free vibration of FG plates, with and without the effect of variables elastic foundations.