• Title/Summary/Keyword: Wings

Search Result 527, Processing Time 0.022 seconds

THE COMPUTATION OF UNSTEADY FLOWS AROUND THREE DIMENSIONAL WINGS ON DYNAMICALLY DEFORMING MESH (변형격자계를 이용한 3차원 날개 주변의 비정상 유동 해석)

  • Yoo, Il-Yong;Lee, Seung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.34-37
    • /
    • 2009
  • Deforming mesh should be used when bodies are deforming or moving relative to each other due to the presence of aerodynamic forces and moments. Also, the flow solver for such a flow problem should satisfy the geometric conservation law to ensure the accuracy of the solutions. In this paper, a RANS(Reynolds Averaged Navier-Stokes) solver including automatic mesh capability using TFI(Transfinite Interpolation) method and GCL is developed and applied to flows induced by oscillating wings with given frequencies. The computations are performed both on deforming meshes and on rigid meshes. The computational results are compared with experimental data, which shows a good agreement.

  • PDF

A STUDY ON THE LOW REYNOLDS NUMBER AIRFOILS FOR THE DESIGN OF THREE DIMENSIONAL WING (3차원 날개 설계를 위한 저레이놀즈수 에어포일에 대한 연구)

  • Jung, K.J.;Lee, J.;Kwon, J.H.;Kang, I.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.90-96
    • /
    • 2009
  • In this study, a generic airfoil designed by the inverse method was evaluated with several candidate airfoils as a first step. Each airfoil was compared with respect to aerodynamic performance to meet the requirement of HALE(high altitude long endurance) aircraft. The second step was to optimize the candidate airfoil using the couple of optimization formulations to down select an optimum airfoil. For the analysis of low Reynolds number 2D flow, Drela's MSES was used. After comparing the aerodynamic results, the best airfoil was chosen to construct the baseline 3D wing. The Navier-Stokes code was used to evaluate the overall aerodynamic performance of designed wing with other wings. The results show that the designed wing has the best performance compared with other wings.

  • PDF

THE COMPUTATION OF UNSTEADY FLOWS AROUND THREE DIMENSIONAL WINGS ON DYNAMICALLY DEFORMING MESH (변형격자계를 이용한 3차원 날개 주변의 비정상 유동 해석)

  • Yoo, Il-Yong;Lee, Byung-Kwon;Lee, Seung-Soo
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 2010
  • Deforming mesh should be used when bodies are deforming or moving relative to each other due to the presence of aerodynamic forces and moments. Also, the flow solver for such a flow problem should satisfy the geometric conservation law to ensure the accuracy of the solutions. In this paper, a RANS(Reynolds Averaged Navier-Stokes) solver including automatic mesh capability using TFI(Transfinite Interpolation) method and GCL is developed and applied to flows induced by oscillating wings with given frequencies. The computations are performed both on deforming meshes and on rigid meshes. The computational results are compared with experimental data, which shows a good agreement.

Flow Visualization on the Bio-Mimic Model of Dragonfly (잠자리 모사 모형 주변의 유동가시화 실험)

  • Yun, Jun-Yong;Uhm, Sang-Jin;Ji, Young-Moo;Park, Jun-Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.16-22
    • /
    • 2010
  • A flow visualization has been conducted to investigate unsteady flight characteristics of a model of dragonfly. The mechanism of lift generation by flapping wings is analyzed using smoke-wire and high speed camera. The experimental results of flow visualization show a discernible sequential dynamics that three mechanisms and high incidence angle of the wings are responsible for the lift generation. The leading edge vortex by the rapid acceleration of leading edge of the wing during initial stage of stroke causes a strong lift enhancement. Delayed stall during the stroke, fast supination and pronation of the wing near the end of each stroke are also responsible for the lift generation.

Development of High Speed type Automatic Alignment System for Spring Wing Toggle (스프링 윙 토글의 고속 자동화 조립 시스템 개발)

  • 강재훈;송준엽;이승우;윤종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.483-486
    • /
    • 2002
  • Toggle bolt is mechanical device constructed with toggle spring wing toggle and machine screw, and defined as an expansive bolt consisting of a nut with flanged wings which are pressed to the bolt and, after insertion in a thin or hollow wall, spread open through spring pressure, thus anchoring it to the wall. And spring wing toggle is aligned with two wings, spring and nut manually in domestic manufacturing line. Then it is regarded as major problem for exports increasement to make cost down in the view of total manufacturing process. Accordingly in this study, high speed type automatic alignment mechanism is guided for spring wing bolt, and exclusive alignment dies and some special additional units are designed and manufactured.

  • PDF