• 제목/요약/키워드: Wing/fuselage system

검색결과 24건 처리시간 0.021초

Proper Orthogonal Decomposition을 이용한 천음속 날개/동체 모텔의 최적설계 (Design Optimization of Transonic Wing/Fuselage System Using Proper Orthogona1 Decomposition)

  • 박경현;전상욱;조맹효;이동호
    • 한국항공우주학회지
    • /
    • 제38권5호
    • /
    • pp.414-420
    • /
    • 2010
  • 본 연구에서는 천음속 날개/동체 모텔에 대한 축소모델 (Reduced Order Model; ROM)의 정확성을 검증하고, Proper Orthogonal Decomposition(POD)을 이용한 최적설계를 통해 그 효율성을 검토하였다. full order 공력해석을 통한 Snapshot을 추출하기 위해 삼차원 오일러 방정식을 이용하였으며, 이들 Snapshot들을 통해 날개/동체 모델 주위 유동장의 거동을 모사하는 POD의 기저벡터를 계산 하였다. 이러한 과정을 거쳐 구축된 축소모텔은 6개의 Case들로 검증하였으며, 그 결과 ROM을 이용해 관심영역에 대한 유동장의 예측을 할 수 있다는 것을 확인하였다. 그리고 ROM을 통한 날개/동체 모델의 최적설계를 수행 하였으며, 그 결과는 반응면모델 (Response Surface Model; RSM)을 이용한 최적설계 결과와 비교 하였다. 이를 통해 ROM을 바탕으로한 최적설계가 RSM을 이용한 것보다 효율적임을 확인하였다.

경량화 소형 위그선 구조 예비 설계에 관한 연구 (Study on Preliminary Structural Design of Light Weight Small Scale WIG Craft)

  • 공창덕;박현범;김주일;이승현;윤재휘
    • 항공우주시스템공학회지
    • /
    • 제1권1호
    • /
    • pp.36-44
    • /
    • 2007
  • This study was performed on preliminary structural design of a small scale WIG craft which has been developed as a next generation high speed maritime transportation system in Korea. A composite structure design using the foam-sandwich for main wing and tail fins and the honeycomb sandwich and skin-stringer-ring frame for fuselage was applied for weight reduction as well as structural stability. A commercial FEM code, NASTRAN for was utilized to confirm the structural safety for the reiterate design modifications to meet design requirements including the target weight. Each main wing was jointed with the fuselage by eight high strength insert bolts for easy assembling and disassembling as well as for assuring the required 20 years service life. For control surface structural design, the channel type spar, the foam sandwich skin and the lug joint were adopted.

  • PDF

Aeroelastic stability analysis of a two-stage axially deploying telescopic wing with rigid-body motion effects

  • Sayed Hossein Moravej Barzani;Hossein Shahverdi
    • Advances in aircraft and spacecraft science
    • /
    • 제10권5호
    • /
    • pp.419-437
    • /
    • 2023
  • This paper presents the study of the effects of rigid-body motion simultaneously with the presence of the effects of temporal variation due to the existence of morphing speed on the aeroelastic stability of the two-stage telescopic wings, and hence this is the main novelty of this study. To this aim, Euler-Bernoulli beam theory is used to model the bending-torsional dynamics of the wing. The aerodynamic loads on the wing in an incompressible flow regime are determined by using Peters' unsteady aerodynamic model. The governing aeroelastic equations are discretized employing a finite element method based on the beam-rod model. The effects of rigid-body motion on the length-based stability of the wing are determined by checking the eigenvalues of system. The obtained results are compared with those available in the literature, and a good agreement is observed. Furthermore, the effects of different parameters of rigid-body such as the mass, radius of gyration, fuselage center of gravity distance from wing elastic axis on the aeroelastic stability are discussed. It is found that some parameters can cause unpredictable changes in the critical length and frequency. Also, paying attention to the fuselage parameters and how they affect stability is very important and will play a significant role in the design.

A Study on the Aerodynamic Characteristics of a Joined-wing Aircraft with Variation of Wing Configurations

  • Kidong Kim;Jisung Jang
    • International Journal of Aerospace System Engineering
    • /
    • 제10권1호
    • /
    • pp.1-13
    • /
    • 2023
  • The present study was attempted to investigate flow interference effects and the aerodynamic characteristics of the front and rear wings of a joined-wing aircraft by changing the configuration variables. The study was performed using a computational fluid dynamics(CFD) tool to demonstrate forward flight and analyze aerodynamic characteristics. A total of 9 configurations were analyzed with variations on the position, height, dihedral angle, incidence angle, twist angle, sweepback angle, and wing area ratio of the front and rear wings while the fuselage was fixed. The quantities of aerodynamic coefficients were confirmed in accordance with joined-wing configurations. The closer the front and rear wings were located, the greater the flow interference effects tended. Interestingly, the rear wing did not any configuration change, the lift coefficient of the rear wing was decreased when adjusted to increase the incidence angle of the front wing. The phenomenon was appeared due to an effective angle of attack alteration of the rear wing resulting from the flow interference by the front wing configurations.

A Study on Conceptual Structural Design of Wing for a Small Scale WIG Craft Using Carbon/Epoxy and Foam Sandwich Composite Structure

  • Kong, Chang-Duk;Park, Hyun-Bum;Kang, Kuk-Gin
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.343-358
    • /
    • 2008
  • This present study provides the structural design and analysis of main wing, horizontal tail and control surface of a small scale WIG (Wing-in-Ground Effect) craft which has been developed as a future high speed maritime transportation system of Korea. Weight saving as well as structural stability could be achieved by using the skin.spar.foam sandwich and carbon/epoxy composite material. Through sequential design modifications and numerical structural analysis using commercial FEM code PATRAN/NASTRAN, the final design structural features to meet the final design goal such as the system target weight, structural safety and stability were obtained. In addition, joint structures such as insert bolts for joining the wing with the fuselage and lugs for joining the control surface to the wing were designed by considering easy assembling as well as more than 20 years service life.

역설계에 의한 비행기의 형상 구현과 수치계산에 의한 유동 가시화 (Geometry Realization of an Airplane and Numerical Flow Visualization)

  • 김양균;김성초;김정수;최중욱;박정
    • 한국가시화정보학회지
    • /
    • 제5권2호
    • /
    • pp.20-25
    • /
    • 2007
  • The geometry of a commercial passenger airplane is realized based on a Boeing 747-400 model through the photographic scanning and reverse engineering. The each element consisting of the plane such as fuselage, wing, vertical fin, stabilizer and engines, is individually generated and then the whole body is assembled by the photomodeler. The maximum error in the realized airplane is about 1.4% comparing with the real one. The three-dimensional inviscid steady compressible governing equations are solved in the unstructured tetrahedron grid system, and in a finite volume method using STAR-CD when the airplane flies at the cruise condition. The pressure distribution on the surface and the wing-tip vortices are visualized, and in addition to the aerodynamics coefficients, lift and drag are estimated.

회전익 항공기 전륜착륙장치 단속거동 현상 개선연구 (An Improvement Study on Stick-Slip Behavior of Nose Landing Gear for Rotary Wing Aircraft)

  • 최재형;장민욱;이윤우;윤종진
    • 한국항공운항학회지
    • /
    • 제25권3호
    • /
    • pp.61-67
    • /
    • 2017
  • The Nose Landing Gear(NLG) of Rotary Wing Aircraft is an essential equipment in Landing System for pilot to perform a flight mission. It supports the fuselage at ground and absorbs the impact from the ground when landing, thereby, these functions sustain operational capability for pilot and crew. However, the A aircraft caused stick-slip behavior when it was stationed on the ground. Therefore, this paper summarizes pilot comment in operation which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test.

소형 WIG선의 복합재 주날개 구조 개념 설계에 관한 연구 (A Study on Conceptual Structural Design for the Composite Wing of A Small Scale WIG Flight Vehicle)

  • 공창덕;박현범;김주일;강국진;박미영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.179-184
    • /
    • 2005
  • In the present study, conceptual design of the main wing for 20 seats WIG{wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The high stiffness and strength Carbon-Epoxy material was used for the major structure and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, firstly the design load was estimated with maximum flight load, and then flanges of the front and the rear spar from major bending load and the skin structure and the webs of the spars were preliminarily sized using the netting rules and the rule of mixture. In order to investigate the structural safety and stability, stress analysis was performed by Finite Element Codes such as NASTRAN/PA TRAN[6] and NISA II [7]. From the stress analysis results, it was confirmed that the upper skin structure between the front spar and rear spar was very unstable for the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich structure at the upper skin and the web were added. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed. Moreover, in order to fix the wing structure at the fuselage, the insert bolt type structure with six high strength bolts was adopted for easy assembly and removal.

  • PDF

DUP와 프로펠러가 있는 위그선 주위의 유동특성 (Flow Characteristics of WIG-Effect Vehicle with Direct-Underside-Pressurization System and Propeller)

  • 이주희;김병삼;박경우
    • 대한기계학회논문집B
    • /
    • 제34권6호
    • /
    • pp.649-654
    • /
    • 2010
  • DUP (direct underside pressurization)-장치와 프로펠러가 있는 3 차원 형상의 위그선(WIG-craft) 주위의 유동특성을 수치적으로 해석하였다. 이를 통하여 위그선 주위의 공기역학 관점의 힘들과 모멘트에 대해 고찰하였다. 이 연구의 해석에 사용된 모델은 프로펠러, 동체, 날개와 동체아래의 압력실 (air chamber)을 포함한 전 영역에 대하여 수행하였다. DUP 장치는 추력의 일부를 동체 아래의 압력실에 정체시킴으로 이륙 시와 같이 낮은 속도에도 효과적으로 양력을 증가시켜 이륙 속도를 줄이는 장치이다. 이러한 DUP 장치는 동압의 증가로 인하여 항력이 증가하고 공기의 회전성분으로 인하여 추가적인 모멘트를 생성하게 된다. 위그선의 비대칭 유동에 의해 발생하는 요잉 및 롤링 모멘트가 위그선의 안정성에 미치는 영향은 매우 미미하였다.

복합 자이로플레인의 한계 속도에 대한 탐색연구(2) : 속도 및 날개 사이징 (An Exploratory Study on the Speed Limit of Compound Gyroplane(2) : Speed and Wing Sizing)

  • 신병준;김학윤
    • 한국항공우주학회지
    • /
    • 제43권11호
    • /
    • pp.978-983
    • /
    • 2015
  • 복합 자이로플레인의 최대 비행 속도 설정 및 부족한 양력을 보조하는 고정익의 사이징에 관한 연구를 수행하였다. BO-105 헬리콥터의 로터 시스템과 엔진을 사용하는 복합 자이로플레인의 성능을 BO-105 헬리콥터와 비교하였다. 로터의 공력특성과 양력분담률을 고려하여 고정익의 익면적을 계산하고 BO-105 동체와 유선형 동체의 형상에 따른 전진 비행 성능 변화를 관찰하였다. 해석 결과 자동회전이 가능한 속도 범위에서 로터는 자동회전으로 1/2의 양력 분담이 가능하고 나머지 절반의 양력을 담당하는 날개를 유선형의 동체에 부착할 경우 유해동력을 최소로 줄일 수 있으며 따라서 복합 자이로플레인 방식으로 비행할 때 헬리콥터보다 높은 속도로 전진 비행할 수 있을 것으로 예측되었다.