• Title/Summary/Keyword: Windup

Search Result 120, Processing Time 0.03 seconds

A New Unified Method for Anti-windup and Bumpless Transfer (누적방지 무충돌전환을 위한 새로운 통합형 기법)

  • Kim, Tae-Shin;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.655-660
    • /
    • 2009
  • In many real applications, the discrepancy problem between controller outputs and plant inputs or the abrupt variation problem of controller outputs can occur. These problems have a negative effect on control performance and stability. It is well-known that two phenomena called 'windup' and 'bump' cause these problems. So far these problems have been studied separately in each side of the anti-windup and the bumpless transfer. This paper proposes a new unified method combines the anti-windup and the bumpless transfer method using the linear quadratic minimization and a proper state space model representation for the anti-windup controller. The proposed method has a feature that it takes account of both the anti-windup and the bumpless transfer in one formula. Finally, we exemplify the performance of the proposed method via numerical examples using the controller switching between the anti-windup PID controller and the anti-windup LQ controller.

A Comparative Study on Anti-windup Schemes for PID Control Systems (PID제어계를 위한 누적방지기법의 비교)

  • 류지수;허학범;박태건;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.127-127
    • /
    • 2000
  • The anti-windup schemes developed so far are summarized and the similarities/differences schemes are discussed. The anti-windup schemes are applied to a DC servomotor control system with PID controller to perform comparative study and sensitivity analysis. Based on those results, some criteria for choosing anti-windup scheme are suggested. The results of this study provide a very useful guideline for selecting and designing the anti-windup scheme for various types of PID control systems.

  • PDF

A New Anti-windup Method Using the Linear Quadratic Observer (LQ관측기를 사용한 새로운 누적방지 기법)

  • Kim, Tae-Shin;Yang, Ji-Hyuk;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.134-139
    • /
    • 2010
  • In order to overcome some problems of existing anti-windup methods, this paper defines LQ (Linear Quadratic) observer and proposes a new anti-windup method using the LQ observer. LQ observer is derived by linear quadratic optimization in order to calculate controller states, which make the controller outputs equal to the plant inputs. And we propose an algorithm so that it can be implemented by a digital controller easily. The relationship between the design parameters and the anti-windup performance is shown via some numerical examples, which cover the cases with the anti-windup method using LQ observer designed and the case without it. Finally, the anti-windup performance of the proposed method is exemplified via comparison with the existing model-based conditioning scheme method[4].

Comparison and Evaluation of Anti-Windup PI Controllers

  • Li, Xin-Lan;Park, Jong-Gyu;Shin, Hwi-Beom
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • This paper proposes a method for comparing and evaluating anti-windup proportional-integral (PI) control strategies. The so-called PI plane is used and its coordinate is composed of the error and the integral state. In addition, an anti-windup PI controller with integral state prediction is proposed. The anti-windup scheme can be easily analyzed and evaluated on the PI plane in detail. Representative anti-windup methods are experimentally applied to the speed control of a vector-controlled induction motor driven by a pulse width modulated (PWM) voltage-source inverter (VSI). The experimental results compare the anti-windup PI controllers. It is empathized that the initial value of the integral state at the beginning of the linear range dominates the control performance in terms of overshoot and settling time.

EA-based Tuning of a PID Controller with an Anti-windup Scheme (안티와인드업 기법을 가지는 PID 제어기의 EA 기반 동조)

  • Jin, Gang-Gyoo;Park, Dong-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.867-872
    • /
    • 2013
  • Many practical processes in industry have nonlinearities of some forms. One commonly encountered form is actuator saturation which can cause a detrimental effect known as integrator windup. Therefore, a strategy of attenuating the effects of integrator windup is required to guarantee the stability and performance of the overall control system. In this paper, optimal tuning of a PID (Proportional-Integral-Derivative) controller with an anti-windup scheme is presented to enhance the tracking performance of the PID control system in the presence of the actuator saturation. First, we investigate effective anti-windup schemes. Then, the parameters of both the PID controller and the anti-windup scheme are optimally tuned by an EA (Evolutionary Algorithm) such as the IAE (Integral of Absolute Error) is minimized. A set of simulation works on two high-order processes demonstrates the benefit of the proposed method.

Anti-Windup of PI Controller for DC Motor Drives (직류 전동기 구동을 위한 PI 제어기의 Anti-Windup)

  • Lee, G-Myoung;Lee, Gi-Do;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.498-500
    • /
    • 1996
  • This paper presents anti-windup to compensate the integrator windup of the current and the speed PI controller of DC motor, which suppress the overshoot of transient response without delay of rising time. The simulation results using Simulink show the validity of anti-windup methods.

  • PDF

Comparison and Evaluation of Anti-windup PI Controllers

  • Li, Xinlan;Shin, Yong-Hwan;Shin, Hwi-Beom
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.602-603
    • /
    • 2010
  • This paper presents a comparison and evaluation between different anti-windup proportional-integral (PI) controller strategies used in variable-speed motor drives, and the anti-windup methods are to the speed control of a vector-controlled induction motor driven by a pulse width modulated (PWM) voltage-source inverter (VSI). The simulation results are compared for the different operating conditions and the characteristic of speed response has been analyzed in order to obtain the optimal performance of anti-windup PI controller method.

  • PDF

Anti-Windup Strategy of PI Controller without Overshoot (오버슈터 없는 PI 제어기의 Anti-Windup 기법)

  • Yun, Won-Eel;Choi, Jong-Woo;Kim, Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.538-541
    • /
    • 2005
  • Most realistic control systems contain nonlinearities of some form. One nonlinearity commonly found in control systems is a saturating element. If integral control is applied to such a system to eliminate steady state error, an undesired side effect known as integrator windup may occur when lage setpoint changes are made. This effect leads to a characteristic step response with a large overshoot and a very high settling time. To avoid this situation, many different anti-windup strategies have been suggested. But existing strategies remain over shoot and high settling time. This paper proposes a new anti-windup strategy for PI speed controllers. When the speed control system is changed P controller to PI controller. Integrator has an appropriate initial value. This value results over shoot and high settling time. The SIMULINK/MATLAB-based comparative simulation results and experiment results of speed controller have shown its superior control performance to that of a proposed anti-windup speed controller.

  • PDF

Speed Control of Switch Reluctance Motor using Modified Anti-Windup PI Controller and Braking Mode (Modified Anti-Windup PI 제어기와 Braking Mode를 이용한 SRM의 속도 제어)

  • Kim, Hak-Sung;Kim, Yuen-Chung;Kim, Jae-Moon;Yoon, Yong-Ho;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.33-39
    • /
    • 2007
  • In this paper, novel topology for fast response of various loads is proposed. The windup phenomenon appears and results in performance degradation when the PI controller output is saturated. A new anti-windup PI controller is proposed to improve the control performance of variable speed motor drives, and it is experimentally applied to the speed control of a hysteresis current-controlled SRM driven by an asymmetry bridge converter. The experimental results show that the speed response has much improved performance, such as small overshoot and fast settling time, over the conventional PI control.

Tuning-free Anti-windup Strategy for High Performance Induction Machine Drives (고성능 유도전동기 구동을 위한 자동 튜닝 Anti-windup 기법)

  • Seok Jul-Ki;Lee Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • This paper presents a tuning-free conditional integration anti-windup strategy for induction machine with Proportional-Integral(PI) type speed controller. The on/off condition of integral action is determined by the frequency domain analysis of machine torque command without a prior knowledge of set-point changes. There are no tuning parameters to be selected by users for anti-windup scheme. In addition, the dynamic performance of the proposed scheme assures a desired tracking response curve with minimal oscillation and settling time even in the change of operating conditions. This algorithm is useful in many high performance induction machine applications not to allow the oscillation and overshoot of speed/torque responses. The main idea can be extended to general applications such as chemical processes and industrial robots.