• 제목/요약/키워드: Windscreen

Search Result 7, Processing Time 0.02 seconds

WINDSCREEN INSTALLED AT THE BOAO 1.8M TELESCOPE DOME (보현산천문대 1.8m 망원경 돔의 방풍막 설치)

  • KIM SEUNG-LEE;SEONG HYEON-CHEOL;YUK IN-SOO;NOH JIN-HYUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.13 no.1 s.14
    • /
    • pp.65-73
    • /
    • 1998
  • We installed windscreen at the BOAO 1.8m telescope dome, in order to reduce the degradation of image Quality under strong wind larger than 8m/sec. The windscreen was designed on the basis of that installed at the MSSSO 2.3m telescope dome in Australia. We developed control system (remote control and user program) of the windscreen, being able to operate the windscreen at observation room. We tested the performance of the windscreen under strong wind of 6-15m/see. Tracking error of the telescope, especially in altitude-axis, was greatly decreased when the windscreen was used. Standard deviation of the error was estimated to be less than 0.3arcsec, which has little effect on image quality.

  • PDF

The Development of the Korean Motor Vehicle Safety Standards for Windscreen Wiper Systems of Motorcycles (이륜자동차 창닦이기장치 등의 국내안전기준 개발)

  • Han, Kyeonghee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.39-45
    • /
    • 2017
  • Two-wheeled motorcycles rarely use windscreen wipers in general. However, if two or more wheeled motorcycles with upper body employ windscreen wiper systems, clear visibility should be ensured regardless of weather conditions. The windscreen wiper systems include washers, defrosting, and demisting. As demands for the personal mobility are rapidly increased, the related global safety standards for motorcycles with upper body have been revised accordingly. Currently only EU regulations issue the provisions of windscreen wiper systems for L-category vehicles, which characterize two or more wheeled motorcycles. Therefore, in order to agree with international safety standards, it is necessary to revise KMVSS (Korea Motor Vehicle Safety Standards) for motorcycles. Here, KMVSS regarding windscreen wiper systems for motorcycles are studied considering the EU regulations. It is expected that the findings in this study are useful for future amendment of KMVSS.

Flow Analysis due to the Slant Angle of a Windscreen at the Front of a Car Body (차체 전방의 앞 유리 경사각도에 따른 유동해석에 관한 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.9-14
    • /
    • 2020
  • In this study, CFX analyses were performed with flow models to minimize the flow resistance due to the windscreen on the front of a car body. The results indicated that the greater the slant angle of the windshield, the greater the maximum pressure area. The lower the slant angle of the windscreen, the smaller the area in which the air collides with the front of the car body and the more smoothly the air moves. The results of this study can be applied to increase fuel economy under driving conditions by changing the slant angle of the vehicle's windscreen.

A Study on Impact Testing of a Rolling-stock Windscreen (철도차량 전면창유리 충격시험에 관한 연구)

  • Jeon, Hong Kyu;Park, Chan Kyoung;Seo, Jung Won;Jeon, Chang Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.365-371
    • /
    • 2013
  • This study describes impact test methods for a rolling-stock windscreen executed in Korea and Europe. Air-pressurized impact test equipment for the front windscreens of high speed trains was designed and manufactured. The equipment is capable of launching a projectile at 500km/h, in accordance with EN 15152's impact test method. Calibration of the test equipment was conducted to find an equation relating air pressure and projectile velocity. Specimens ($1000mm{\times}700mm$) having similar specifications with the front windscreens in metro and conventional trains were used to conduct impact tests with this equipment to research the impact characteristics of the screens according to the impact velocity.

The microphone system of the cellular phone for privately telephonic communication (속삭임 통화를 위한 휴대 전화용 마이크로폰 시스템)

  • 최성준;문원규;이정현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1335-1340
    • /
    • 2001
  • The information technology brought us many kinds of conveniences to our life, but it also caused social problems such as privacy interference, unexpected personal information leaks, and nose generation by telephonic talks, etc. In this paper, the microphone system of the cellular phone is developed to prevent these problems caused by progress of information technology. The developed system was designed to detect only acoustic signals from a human being in the presence of various kinds of background noises. A windscreen was designed by use of micro-channels to eliminate the popping noise by the wind from the mouth of a speaker and four microphone array and signal processing techniques are applied to reduce background noise. The impact of the developed system was evaluated by experimental tests. The results show that the system can improve the required functions considerably.

  • PDF

Development of Safe Hood for Pedestrian Protection (보행자 보호를 위한 안전 후드 개발)

  • Kim, T.J.;Hong, S.H.;Lee, D.H.;Han, D.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.345-346
    • /
    • 2008
  • Most pedestrian-vehicle crashes involve frontal impacts, and the vehicle front structures are responsible for most pedestrian injuries. The vehicle bumper contacts the lower legs at first. The leading edge of the hood (bonnet) strikes the proximal upper leg and finally, the head and upper torso hit the top surface of the hood or windscreen. In essence, the pedestrian wraps around the front of the vehicle until pedestrian and vehicle are traveling at the same speed. Since the hood surface is made from sheet metal, it is a relatively compliant structure and does not pose a major risk for severe head trauma. However, serious head injury can occur when the head hits a region of the hood with stiff underlying structures such as engine components. The solution is to provide sufficient clearance between the hood and underlying structures for controlled deceleration of a pedestrian's head. However, considerations of aerodynamic design and styling can make it extremely difficult to alter a vehicle's front end geometry to provide more under-hood space. In this study, the safe hood will be developed by designing new conceptual inner panel in order to decrease the pedestrian's head injuries without changing hood outer geometry.

  • PDF

CALPUFF Modeling of Odor/suspended Particulate in the Vicinity of Poultry Farms (축사 주변의 악취 및 부유분진의 CALPUFF 모델링: 계사 중심으로)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.90-104
    • /
    • 2019
  • In this study, CALPUFF modeling was performed, using a real surface and upper air meterological data to predict trustworthy modeling-results. Pollutant-releases from windscreen chambers of enclosed poultry farms, P1 and P2, and from a open poultry farm, P3, and their diffusing behavior were modeled by CALPUFF modeling with volume sources as well as by finally-adjusted CALPUFF modeling where a linear velocity of upward-exit gas averaged with the weight of each directional-emitting area was applied as a model-linear velocity ($u^M_y$) at a stack, with point sources. In addition, based upon the scenario of poultry farm-releasing odor and particulate matter (PM) removal efficiencies of 0, 20, 50 and 80% or their corresponding emission rates of 100, 80, 50 and 20%, respectively, CALPUFF modeling was performed and concentrations of odor and PM were predicted at the region as a discrete receptor where civil complaints had been frequently filed. The predicted concentrations of ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ were compared with those required to meet according to the offensive odor control law or the atmospheric environmental law. Subsequently their required removal efficiencies at poultry farms of P1, P2 and P3 were estimated. As a result, a priori assumption that pollutant concentrations at their discrete receptors are reduced by the same fraction as pollutant concentrations at P1, P2 and P3 as volume source or point source, were controlled and reduced, was proven applicable in this study. In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of P1 compared with those of point source-adopted CALPUFF modeling, were predicted similar each other. However, In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of both ammonia and $PM_{10}$ at not only P2 but also P3 were predicted higher than those of point source-adopted CALPUFF modeling. Nonetheless, the volume source-adopted CALPUFF modeling was preferred as a safe approach to resolve civil complaints. Accordingly, the required degrees of pollution prevention against ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ at P1 and P2, were estimated in a proper manner.