• Title/Summary/Keyword: Window area ratio

Search Result 83, Processing Time 0.025 seconds

A Study on the Effect of Envelope Factors on Cooling, Heating and Lighting Energy Consumption in Office Building (사무소 건물의 외피요소가 냉난방 및 조명에너지 소비에 미치는 영향에 관한 연구)

  • Son, Chang-Hee;Yang, In-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.8-17
    • /
    • 2012
  • The objective of this study is to perform an analysis of the heat(heating and cooling) and lighting energy consumption according to the window area ratio and the application of horizontal louver, which is external shading device installed for the purpose of energy savings in office buildings. For this, a building was chosen as a typical example, and the heat and lighting energy consumption was calculated by using the daylight and building energy analysis simulation. The results showed that the total energy consumption, when the lighting control was applied, was reduced by an average of 11.49[%] compared to when there was no lighting control. The smaller the glazing ratio is, the less the total energy consumption is. Also, the application of the horizontal louver increases the total energy consumption under the same condition of glazing ratio.

Estimation Model of the Carbon Dioxide Emission in the Apartment Housing During the Maintenance period (공동주택 사용부문의 이산화탄소 배출량 추정모델 연구)

  • Lee, Kang-Hee;Chae, Chang-U
    • KIEAE Journal
    • /
    • v.8 no.4
    • /
    • pp.19-27
    • /
    • 2008
  • The carbon dioxide is brought from the energy consumption and regarded as a criteria material to estimate the Global Warming Potential. Building shares about 30% in national energy consumption and affects to environment as much as the energy consumption. But there is not enough data to forecast the amount of the carbon dioxide during the maintenance stage. Various factors are related with the energy consumption and carbon dioxide emission such as the physical area, the building exterior area, the maintenance type and location. Among these factors, the building carbon-dioxide emission can be estimated by the overall building characteristics such as the maintenance area, the number of household, the heating type, etc., The physical amount such as the thickness of the insulation and window infiltration could explained the limited scope and might not be use to estimate the total carbon-dioxide emission energy because the each value could not include or represent the overall building. In this paper, it provided the estimation model of the carbon-dioxide emission, explained by the overall building characteristics. These factors are shown as the maintenance area, no. of household, the heating type, the volume of the building, the ratio of the window to wall area etc., For providing the estimation model of th carbon-dioxide emission, it conducted the corelation analysis to filter the variables and suggested the estimation model with the power model and multiple regression model. Most of the model have a good statistics and fitted in the curve line.

An Investigation on Combustion Characteristics of Hydrogen-Air Premixture in a Sub-millimeter Scale Catalytic Combustor using Infrared Thermography (적외선 열화성 온도 측정법을 이용하여 살펴본 서브밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성)

  • Choi, Won-Young;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.17-24
    • /
    • 2005
  • A sub-millimeter scale catalytic combustor with a simple plate-shaped combustion chamber was fabricated. A porous ceramics support coated with platinum catalyst was placed in the chamber. The combustor has a gallium arsenide window on the top that is transparent to infrared ray. The temperature distribution in the combustion chamber was measured using infrared thermal imager while hydrogen-air premixture is steadily supplied to the combustor. The area where the catalytic reaction took place broaden for higher flow rate and lower equivalence ratio made activated area in the combustion chamber broaden. The amount of coated platinum catalyst did not affect the reaction. Stop of reaction, which is similar to flame quenching of conventional combustion, was investigated. Large content of heat generation and broad activated area are essential criteria to prevent stop of reaction that has a bad effect on the combustor performance.

  • PDF

Selectivity Estimation using the Generalized Cumulative Density Histogram (일반화된 누적밀도 히스토그램을 이용한 공간 선택율 추정)

  • Chi, Jeong-Hee;Kim, Sang-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.4
    • /
    • pp.983-990
    • /
    • 2004
  • Multiple-count problem is occurred when rectangle objects span across several buckets. The CD histogram is a technique which selves this problem by keeping four sub-histograms corresponding to the four points of rectangle. Although It provides exact results with constant response time, there is still a considerable issue. Since it is based on a query window which aligns with a given grid, a number of errors nay be occurred when it is applied to real applications. In this paper, we propose selectivity estimation techniques using the generalized cumulative density histogram based on two probabilistic models : \circled1 probabilistic model which considers the query window area ratio, \circled2 probabilistic model which considers intersection area between a given grid and objects. Our method has the capability of eliminating an impact of the restriction on query window which the existing cumulative density histogram has. We experimented with real datasets to evaluate the proposed methods. Experimental results show that the proposed technique is superior to the existing selectivity estimation techniques. Furthermore, selectivity estimation technique based on probabilistic model considering the intersection area is very accurate(less than 5% errors) at 20% query window. The proposed techniques can be used to accurately quantify the selectivity of the spatial range query on rectangle objects.

A Study on the Exterior Color of Housing in Rural Area Comparing with Traditional Housing Color (농촌지역 전통, 개량 및 신축주택 외장색채 비교분석 연구)

  • Paik, Suk-Jong
    • Journal of the Korean housing association
    • /
    • v.19 no.6
    • /
    • pp.157-166
    • /
    • 2008
  • Until 1960, the major housing type of rural area in Korea was traditional wooden frame building, which was made of natural materials. In the course of modernization and New Village Movement, most of traditional houses have been renovated focusing on changing roof material of rice straw into slate, keeping existing main wooden structure. And then from around 1980, by economical development the new houses have been constructed. On these three phases of traditional type, remodeling type and new construction type, the natural materials of housing facade as wood, soil, stone and plant changed into artificial materials as cement, chemical material and paint. At the same time the exterior color of housing also have been changed and varied. The purpose of this thesis is to find out the changing aspect of exterior color by comparing remodeled and new constructed housing with of traditional housing. The exterior color of one hundred and fifty seven houses were surveyed and the three color attributes of each part of facade, as roof, wall and window, were analyzed and compared. In case of traditional houses, 98.3% of color are concentrated on the warm color of Y and YR on HUE scale, and 88% of their color are low Chroma. And Value of their color has been varied and spreaded from low to high Value scale. From traditional types to remodeled and new constructed houses, the concentration ratio of warm color on Hue scale reduced from 98.3% to 68.7% and ratio of low Chroma was also changed from 88% to 73.2% and the ratio of low Value color reduced from 51.9% to 29.7%. The exterior color of houses in rural area varied on Hue, and the more saturated colors were used and they became brighter compared with color of traditional houses. It is expected that the results of this study can be used for basic data of exterior color planning and improvement into harmonized color with natural environment.

Analysis of the Pressure Behavior with the Partial Rupture in Closed Vessel During Gaseous Explosion (밀폐공간에서 가스폭발에 의한 개구발생 후의 압력변화에 대한 해석)

  • 윤재건;조한창;신현동
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.40-47
    • /
    • 1999
  • A numerical study on gaseous explosion was carried out to predict the transient pressure behavior with the partial rupture in confined vessels. Equations, assumptions and solutions for central ignition of premixed gases in closed spherical vessels are proposed with various equivalence ratios of gas fuel, as $CH_4$ and $C_3H_8$, vent areas and vent opening pressures. Given vent opening pressure in a vessel, the magnitude of second peak pressure results from the vent areas and burning velocity, varied by equivalence ratio of gas fuel. In a living room of an apartment, the higher second peak pressure than the vent pressure is not appeared due to its large window areas. As vent opening pressure is higher, the larger damage by gaseous explosion is expected and the larger vent area is necessary for relieving the damage. In the same concentration, the gaseous explosion by propane rather than methane shows the larger damage due to its higher adiabatic flame temperature and equivalence ratio.

  • PDF

An Experimental Study of Flow Field in a Torque Converter (토크 컨버터 내부 유동장의 실험적 연구)

  • Yoo, S.C.
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2010
  • The flow field measurements were conducted on the planes between impeller blades, and the gap between the impeller and turbine blades under speed ratio of 0.4. The study showed that high velocity regions move from locations near the suction surface of the impeller to the pressure blade, shroud corner as flow progresses from the mid-chord of impeller passage to exit and out into the gap region. Planes 3 through 5 also showed flow reversal occurring in the area near the shell surface and progress far into the impeller passage from the impeller passage exit, near shell surface. This affected the converter efficiency negatively. This study would aid in the construction of higher accuracy CFD models of this complex turbomachinery device.

IDMMAC: Interference Aware Distributed Multi-Channel MAC Protocol for WSAN

  • Kakarla, Jagadeesh;Majhi, Banshidhar;Battula, Ramesh Babu
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1229-1242
    • /
    • 2017
  • In this paper, an interference aware distributed multi-channel MAC (IDMMAC) protocol is proposed for wireless sensor and actor networks (WSANs). The WSAN consists of a huge number of sensors and ample amount of actors. Hence, in the IDMMAC protocol a lightweight channel selection mechanism is proposed to enhance the sensor's lifetime. The IDMMAC protocol divides the beacon interval into two phases (i.e., the ad-hoc traffic indication message (ATIM) window phase and data transmission phase). When a sensor wants to transmit event information to the actor, it negotiates the maximum packet reception ratio (PRR) and the capacity channel in the ATIM window with its 1-hop sensors. The channel negotiation takes place via a control channel. To improve the packet delivery ratio of the IDMMAC protocol, each actor selects a backup cluster head (BCH) from its cluster members. The BCH is elected based on its residual energy and node degree. The BCH selection phase takes place whenever an actor wants to perform actions in the event area or it leaves the cluster to help a neighbor actor. Furthermore, an interference and throughput aware multi-channel MAC protocol is also proposed for actor-actor coordination. An actor selects a minimum interference and maximum throughput channel among the available channels to communicate with the destination actor. The performance of the proposed IDMMAC protocol is analyzed using standard network parameters, such as packet delivery ratio, end-to-end delay, and energy dissipation, in the network. The obtained simulation results indicate that the IDMMAC protocol performs well compared to the existing MAC protocols.

A Study on the Analysis of Energy Consumption Patterns According to the Building Shapes with the Same Volume (동일 체적의 건물 형상에 따른 에너지 소비량 패턴에 대한 분석 연구)

  • Choi, Won-Ki;Kim, Heon-Joong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.103-109
    • /
    • 2007
  • This study was focused on the establishment of a fundamental DB(database) that is available in the building design process, so we performed the simulation analysis about the energy consumption on the various same volume buildings. Because energy consumption in building is affected by the exterior surface area, the ratio of long/short length in surface and the adjacent internal surface area etc.. For these purpose, we assumed the unit module and made a constructable 16 model buildings which are composed of the 16 unit modules. Then we analyzed the simulation using the TRNSYS 16 and the Seoul weather data. In results, energy consumption in building is more reduced that in case of the smaller exterior surface area, the lower stories building and the larger adjacent surface area etc.. Further study is to be required the sensitivity analysis on the various weather conditions, building shapes and window area etc..

Characteristics of Memory Windows of MFMIS Gate Structures (MFMIS 게이트 구조에서의 메모리 윈도우 특성)

  • Park, Jun-Woong;Kim, Ik-Soo;Shim, Sun-Il;Youm, Min-Soo;Kim, Yong-Tae;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.319-322
    • /
    • 2003
  • To match the charge induced by the insulators $CeO_2$ with the remanent polarization of ferro electric SBT thin films, areas of Pt/SBT/Pt (MFM) and those of $Pt/CeO_2/Si$ (MIS) capacitors were ind ependently designed. The area $S_M$ of MIS capacitors to the area $S_F$ of MFM capacitors were varied from 1 to 10, 15, and 20. Top electrode Pt and SBT layers were etched with for various area ratios of $S_M\;/\;S_F$. Bottom electrode Pt and $CeO_2$ layers were respectively deposited by do and rf sputtering in-situ process. SBT thin film were prepared by the metal orgnic decomposition (MOD) technique. $Pt(100nm)/SBT(350nm)/Pt(300nm)/CeO_2(40nm)/p-Si$ (MFMIS) gate structures have been fabricated with the various $S_M\;/\;S_F$ ratios using inductively coupled plasma reactive ion etching (ICP-RIE). The leakage current density of MFMIS gate structures were improved to $6.32{\times}10^{-7}\;A/cm^2$ at the applied gate voltage of 10 V. It is shown that in the memory window increase with the area ratio $S_M\;/\;S_F$ of the MFMIS structures and a larger memory window of 3 V can be obtained for a voltage sweep of ${\pm}9\;V$ for MFMIS structures with an area ratio $S_M\;/\;S_F\;=\;6$ than that of 0.9 V of MFS at the same applied voltage. The maximum memory windows of MFMIS structures were 2.28 V, 3.35 V, and 3.7 V with the are a ratios 1, 2, and 6 at the applied gate voltage of 11 V, respectively. It is concluded that ferroelectric gate capacitors of MFMIS are good candidates for nondestructive readout-nonvolatile memories.

  • PDF