• Title/Summary/Keyword: Window Opening-Closing Operation

Search Result 6, Processing Time 0.025 seconds

Intelligent and Responsive Window Opening-Closing Operation Process for Carbon Dioxide(CO2) Management of Secondary School Classroom (중등학교 교실의 이산화탄소(CO2) 관리를 위한 지능형 창호개폐 작동 프로세스)

  • Choi, Yoon-Young;Lee, Hyun-Soo
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.4
    • /
    • pp.19-30
    • /
    • 2018
  • The school classroom is a common living place where students spend 7 to 14 hours a day to prepare for their careers. Therefore, if the ventilation of the classroom is not properly performed, it may lead to the deterioration of learning ability due to the unclear air. The concentration of carbon dioxide in the classroom is reported to be high, and the increase in carbon dioxide concentration has a negative effect on the learner's academic performance. In this context, the purpose of this study is to propose a methodology for intelligent and responsive window opening-closing operation process that can reduce the concentration of $CO_2$ in the classroom in order to build a support space that can create an effective teaching-learning environment for adolescents. The specific objectives are as follows. First of all, we define the concept of window opening-closing operation. Secondly, twe develop the operation process of window opening-closing. Thirdly, we develop an algorithm for real-time window opening and closing (process) (Window Opening-Closing Operation Process). Finally, we verify the intelligent responsive window opening-closing operation process through developing examples of window opening-closing operation process using the parametric design program. This study is a preliminary study to develop algorithms necessary for window opening-closing operation. Based on the first-order algorithm, We simulated window opening-closing operations according to a hypothetical scenario. As a result, This study can show that the window is open and close depending on the $CO_2$ concentration, but the $CO_2$ concentration in the room is higher than outdoors. Consequentially, we suggest that it is necessary to develop an algorithm to supplement these results because window is often not working when the temperature difference between indoor and outdoor in winter is large.

Roof Ventilation Structure for Single Span Greenhouses of Arch Shape (아치형 단동 온실의 지붕 환기 구조)

  • Nam, Sang-Woon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.267-270
    • /
    • 2001
  • It is difficult to install a ventilation window on the roof of single span greenhouse of arch shape. Investigation on the roof ventilation structure for those greenhouses was conducted. The effect of roof ventilation was evaluated by comparative experiments between greenhouse installing roof vent and having controlled side vent only. And ventilation efficiency was analyzed by experiments on the opening and closing operation of the roof and side vent.

  • PDF

Performance evaluation of a 400 W precise window motor for glass houses

  • Hong, Soon-Joong;Park, Soo-Bok;Kang, Na-Rae;Kim, Yong-Joo;Chung, Sun-Ok
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.595-603
    • /
    • 2017
  • Crop growth and production cost are greatly influenced by management of environmental factors such as ambient temperature, humidity, and $CO_2$, especially in protected horticulture. Opening and closing of greenhouses is the most important operation for control of these ambient environmental factors, and precise and stable operation requires high performance window motors. In this study, a 400 W precise window motor was constructed, and its performance was evaluated for plastic and glass greenhouses. First, the motor was designed and fabricated by benchmarking of an advanced foreign product. Then, the performance was evaluated through vibration, PCB (Process Control Block), and load tests. Vibration tests resulted in averaged vibration displacement and velocity of the developed motor of 0.002 mm and 0.2267m/s, which were statistically significantly different from those of the target motor. Average vibration acceleration ($0.26m/s^2$) of the developed motor was also significantly different from that ($0.51m/s^2$) of the target motor. PCB tests showed 2 - 4 mm deviation from the target values, and confirmed the operating status and precision of the control. Load tests with a 300 kg load also showed acceptable operating status and durability. Current values were $1.31{\pm}0.06A$ and RPMs were in the range of 2.9 - 3.0. Considering the above results, the developed window motor would be competitive to the target foreign product.

A Study on Development of Independent Low Power IoT Sensor Module for Zero Energy Buildings (제로 에너지 건축물을 위한 자립형 저전력 IoT 센서 모듈 개발에 대한 연구)

  • Kang, Ja-Yoon;Cho, Young-Chan;Kim, Hee-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.273-281
    • /
    • 2019
  • The energy consumed by buildings among the total national energy consumption is more than 10% of the total. For this reason, Korea has adopted the zero energy building policy since 2025, and research on the energy saving technology of buildings has been demanded. Analysis of buildings' energy consumption patterns shows that lighting, heating and cooling energy account for more than 60% of total energy consumption, which is directly related to solar power acquisition and window opening and closing operation. In this paper, we have developed a low - power IoT sensor module for window system to transfer acquired information to building energy management system. This module transmits the external environment and window opening / closing status information to the building energy management system in real time, and constructs the network to actively take energy saving measures. The power used in the module is designed as an independent power source using solar power among the harvest energy. The topology of the power supply is a Buck converter, which is charged at 4V to the lithium ion battery through MPPT control, and the efficiency is about 85.87%. Communication is configured to be able to transmit in real time by applying WiFi. In order to reduce the power consumption of the module, we analyzed the hardware and software aspects and implemented a low power IoT sensor module.

A Study on the Analysis of $CO_2$ Concentration Variation According to the Indoor Space Condition Changes (다양한 실내 환경에서의 $CO_2$ 농도 변화 분석 연구)

  • Ahn, Gwang-Hoon;Kwon, Jong-Won;Kim, Gyu-Sik;Kim, Hie-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.347-349
    • /
    • 2009
  • Air quality of indoor space environment is affected by various pollutants like as particles and chemical stuffs. The indoor air pollution affects directly the human respiration organs to cause consequently unpleasant mental status. The $CO_2$ concentration level is one of the harmful components of air pollutants. Major factor to increase the $CO_2$ concentration level is the people's breath amount in indoor. The car exhaust gas diffused from the around road also has strong affect on $CO_2$ concentration. There are some other reasons to affect the $CO_2$ concentration change, such as, real-time change of the population movement, closeness to the indoor air flow inlet window and changes in road car traffic amount. A remote monitoring system to measure environmental indoor air pollution concerning on the $CO_2$ concentration was studied and installed realized set-up model. Zigbee network configuration was applied for this system and the $CO_2$ concentration data were collected through USN network. A software program was developed to assure systematic analysis and to display real-time data on web pages. For the experimental test various condition was set up, like as, window opening, stopping air condition operation and adjusting fan heater work, etc. The analysis result showed the relation of various environmental conditions to $CO_2$ concentration changes. The causes to increase $CO_2$ concentration were experimentally defined as windows closing, the stopping air condition system, fan heater operation. To keep the $CO_2$ concentration under the legally required ppm level in public access indoor space, the developed remote measurement system will be usefully applied.

  • PDF

Roof Ventilation Structures and Ridge Vent Effect for Single Span Greenhouses of Arch Shape (아치형 단동온실의 지붕환기구조 및 천창효과)

  • Nam, Sang-Woon
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.99-107
    • /
    • 2001
  • It is difficult to install a ventilation window on the roof of single span greenhouses of arch shape. Investigation on the roof ventilation structures for those greenhouses was conducted. In small greenhouses with spans of 5 to 8 m, circular or chimney type ridge vents made of plastic were employed. In large greenhouses with spans of 12 to 18 m, even span roll-up ridge vents made of steel pipe were employed. The effect of roof ventilation was evaluated by comparative experiments between greenhouse installing ridge vents and having controlled side vents only. Roof ventilation contributed greatly to restraint of temperature rise and maintenance of uniform temperature distribution in greenhouses. And ventilation efficiency was analyzed by experiments on the opening and closing operation of the ridge and side vent. There were no temperature differences according to opening and closing sequence of ventilation window. But for greenhouse temperature control by ventilation, it is desirable to open side vents after ridge vents and to close ridge vents after side vents.

  • PDF