• 제목/요약/키워드: Winding temperature

검색결과 259건 처리시간 0.027초

스트랜드 인장시편을 적용한 탄소섬유/에폭시 복합재의 열화특성 연구 (Characteristics of Thermal Degradation for Carbon Fiber/Epoxy Composite using Strand Specimen)

  • 오진오;길형배;윤성호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.408-410
    • /
    • 2012
  • 본 연구에서는 수지 인장시편과 스트랜드 인장시편을 적용하여 탄소섬유/에폭시 복합재의 고온에서의 특성을 조사하였다. 연구결과에 따르면 수지시편의 인장강성은 수지의 유리전이 온도에 근접해감에 따라 서서히 감소하지만 스트랜드 인장시편의 인장강성은 상온에서의 인장강성을 유지한다. 수지시편과 스트랜드 시편의 인장강도는 온도가 유리전이 온도에 근접할수록 급격한 감소를 나타내었다.

  • PDF

수치해석을 통한 유도가열 코일의 설계 및 설계인자의 민감도 해석 (Design and Sensitivity Analysis of Design Factors for Induction Heating System)

  • 오동욱;김태훈;도규형;박장민;이정호
    • 열처리공학회지
    • /
    • 제26권5호
    • /
    • pp.233-240
    • /
    • 2013
  • Rapid and homogeneous heating in heat treatment has been a challenging engineering issue throughout a heating temperature over $1,000^{\circ}C$. Induction heating has been widely used in field of heat treatment compared with conventional heating system. Advantages in homogeneous heating, simple fabrication, and repeatable use can be efficiently made with the induction heater. In this paper, numerical analysis of an induction coil system for heat flux gauge heating is performed. The effect of configuration on the heating performance was considered in various cases of the coil radius, distance between the winding, relative height difference between the heat flux gauge and the coil, and the applied current frequency. Temperature distribution within the heat flux gauge at frequency-steady state was calculated with a finite element method. Sensitivity analysis was also performed and the relative importance of 2 key parameters; coil radius, distance between the winding, were taken as main contributors for induction heating.

Field gradient calculation of HTS double-pancake coils considering the slanted turns and the splice

  • Baek, Geonwoo;Kim, Jinsub;Lee, Woo Seung;Song, Seunghyun;Lee, Onyou;Kang, Hyoungku;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권1호
    • /
    • pp.51-55
    • /
    • 2017
  • To obtain Nuclear Magnetic Resonance (NMR) measurement of membrane protein, an NMR magnet is required to generate high intensity, homogeneity, and stability of field. A High-Temperature Superconducting (HTS) magnet is a promising alternative to a conventional Low-Temperature Superconducting (LTS) NMR magnet for high field, current density, and stability margin. Conventionally, an HTS coil has been wound by several winding techniques such as Single-Pancake (SP), Double-Pancake (DP), and layer-wound. The DP winding technique has been frequently used for a large magnet because long HTS wire is generally difficult to manufacture, and maintenance of magnet is convenient. However, magnetic field generated by the slanted turns and the splice leads to field inhomogeneity in Diameter of Spherical Volume (DSV). The field inhomogeneity degrades performance of NMR spectrometer and thus effect of the slanted turns and the splice should be analyzed. In this paper, field gradient of HTS double-pancake coils considering the slanted turns and the splice was calculated using Biot-Savart law and numerical integration. The calculation results showed that magnetic field produced by the slanted turns and the splice caused significant inhomogeneity of field.

액체질소로 냉각된 Bi-2223 선재의 퀜치 전파 특성에 관한 연구 (A Study on the Quench Propagation Properties of Bi-2223 Wire cooled in Liquid Nitrogen)

  • 윤경용;배덕권;안민철;강형구;이찬주;윤용수;이상진;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권1호
    • /
    • pp.32-36
    • /
    • 2005
  • With the successful commercialization of Bi-2223 powder-in-tube wire , various attempts in the R & D of the high-Tc superconducting (HTS) magnets for high magnetic field applications are being implemented actively. Operating temperature of HTS magnet has to be maintained at the designed level but the magnetic energy and mechanical disturbance can cause unstable operational temperature of HTS magnet. Especially the generated heat energy of inner HTS winding Is apt to be accumulated . so the normal region appears in HTS winding. This paper deals with the quenching characteristics of three kinds of selected Bi-2223 wires : the High Current Density Wire (HC-A) and the High Strength Wire (HS-A) made by AMSC and HTS wire(HW-I) made by Innost The Innost wire has the highest minimum quench energy (MQE). The High Current Density Wire has the highest normal zone Propagation velocity (NZPV).

Fabrication and Characteristic Tests of a 1 MVA Single Phase HTS Transformer with Concentrically Arranged Windings

  • Kim, S.H.;Kim, W.S.;Choi, K.D.;Joo, H.G.;Hong, G.W.;Han, J.H.;Lee, H.G.;Park, J.H.;Song, H.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.37-40
    • /
    • 2004
  • A 1 MV A single phase high temperature superconducting (HTS) transformer was manufactured and tested. The rated voltages of primary and secondary of the HTS transformer are 22.9 kV and 6.6 kV respectively. BSCCO-2223 HTS tape was used for HTS windings of 1 MV A HTS transformer. In order to reduce AC loss generated in the HTS winding, the type of concentric arrangement winding was adopted to a 1 MV A HTS transformer. Single HTS tape for primary windings and 4 parallel HTS tapes for secondary windings were used considering the each rated current of the HTS transformer. A core of HTS transformer was fabricated as a shell type core made of laminated silicon steel plate. And a GFRP cryostat with a room temperature bore was also manufactured. The characteristic tests of 1 MV A HTS transformer were performed such as no load test, short circuit test and several insulation tests at 65 K using sub-cooled liquid nitrogen. From the results of tests, the validity of design of HTS transformer was ascertained.

AC Loss Effects on the Design of HTS Windings for 1 MVA Power Transformer

  • Kim, Jong-Tae;Kim, Woo-Seok;Kim, Sung-Hoon;Choi, Kyeong-Dal;Hong, Gye-Won;Joo, Hyeong-Gil;Hahn, Song-Yop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.32-36
    • /
    • 2004
  • AC loss is one of the important parameters in HTS (High Temperature Superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in electrical power system. But, AC loss is one of the most serious problems of the HTS transformer, especially with pancake windings, because high alternating magnetic field is applied perpendicularly to the surface of BSCCO wire in HTS windings of that, comparing with the other HTS AC power devices. For the reason above the calculation of AC loss generated in the HTS windings should be carried out in advance when designing the HTS transformer. In the paper we performed study for optimization of winding design to minimize the magnetization loss of HTS winding such as the spaces between pancake windings and operating temperature of HTS wire. The calculation of the AC loss was accomplished by 2-demensional Finite Element Method.

대전류 출력형 Flat Transformer 설계 및 해석 기술 (Design and Simulation Technologies of Flat Transformer with High Power Current)

  • 한세원;조한구;우병철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.15-17
    • /
    • 2002
  • Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

Detection of Incipient Faults in Induction Motors using FIS, ANN and ANFIS Techniques

  • Ballal, Makarand S.;Suryawanshi, Hiralal M.;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • 제8권2호
    • /
    • pp.181-191
    • /
    • 2008
  • The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

고온 초전도 전원장치를 이용한 BSCCO Magnet의 충전 및 영구전류 운전 특성 (Charging and Persistent-Current Mode Operating Characteristics of BSCCO Magnet Using High-Tc Superconducting Power Supply)

  • 조현철;양성은;김영재;황영진;윤용수;정윤도;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권1호
    • /
    • pp.30-34
    • /
    • 2009
  • This paper deals with charging and persistent-current mode operating characteristics of BSCCO magnet load using high-temperature superconducting (HTS) power supply. The HTS power supply consists of two heater-triggered switches, an iron-core transformer with the primary copper winding and the secondary BSCCO solenoid, and a BSCCO magnet load. The magnet load was fabricated by double pancake winding and its inductance is about 21 mH. A hall sensor was installed at the middle of the magnet load to measure the current in the load. In order to investigate the efficient pumping characteristics, operating tests of heater-triggered switch with respect to dc heater current were carried out, and the electromagnet current was determined by considering saturation characteristics of its iron core. The saturation characteristics of charged current in the magnet load were observed with respect to various pumping periods: 12 s, 14 s, 24 s and 32 s. After charging the magnet load, the persistent current was measured. The operating characteristics of the persistent current mode were mainly determined by joint resistance and magnet load.

직렬 연결된 두 코일과 YBCO Coated Conductor로 구성된 초전도 전류제한기의 권선방향과 권선 비에 따른 전류제한 특성 분석 (Analysis on Current Limiting Characteristics of the SFCL with Magnetically Coupled Two Coils and YBCO Coated Conductor Due to the Winding Direction and the Turn Number' Ratio Between Two Coils)

  • 이동혁;두호익;김용진;한병성;한상철;이정필
    • 한국전기전자재료학회논문지
    • /
    • 제24권1호
    • /
    • pp.52-56
    • /
    • 2011
  • The ongoing Superconducting Fault Current Limiter(SFCL) development mainly has focused on the application of commercializaton and power system through combining with normal-conducting device, moving away from current-limiting method, which is solely dependant on the existing superconductor. Compared to the structural development above, on the other hand, the research on applying superconducting current-limiting element to SFCL, the heart of SFCL, still has a lot left to do, apart form traditional resistive type SFCL. In this study, we looked into the current limiting characteristic of SFCL using core and coil. YBCO coated conductor with stainless steel stabilizer layer was verified by the excellent of current-limiting element of the resistive type SFCL that has a high Jc and index as well as being superior in mechanical property. Also, we study temperature characteristics and resistance characteristics, max voltage, response time and current-limiting ability that can be an indicator as current-limiting element while applying to superconducting current-limiting element caused by variation of winding direction, winding ratio of SFCL using core and coil.