• Title/Summary/Keyword: Winding ratio

Search Result 182, Processing Time 0.018 seconds

Optimal Design of Synchronous Reluctance Motor Related to Slot Number using Response Surface Methodology (반응표면방법론을 적용한 슬롯 수에 따른 동기형 릴럭턴스 전동기의 최적 설계)

  • Park, Seong-June;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.117-119
    • /
    • 2005
  • This parer presents the application of response surface methodology (RSM) to design optimization for two types of synchronous reluctance motors (SynRMs) one has 12 slots with distributed winding, and the other has 6 slots with concentrated winding, to improve the ratio between torque ripple and average torque. The usefulness of RSM in optimization problem of SynRM is verified as compared with the results of finite element analysis. In the end, the optimized two SynRMs are compared with SynRM currently used in air-conditioning compressor in connection with torque performance and loss.

  • PDF

A Comparative Study on Fault Detection Algorithm of AC Generator (교류 발전기의 고장 검출 알고리즘에 관한 비교 연구)

  • Park, Chul-Won;Shin, Kwang-Chul;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • AC generator plays an important role of power system. The large AC generator fault may lead to large impacts or perturbations in power system. And then the protection of a generator has very important role in maintaining stability in a power system. In present, the DFT(discrete Fourier transform) based RDR(ratio differential relay) had been widely applied to a internal fault of a generator stator winding. But DFT has a serious drawback. In the course of transforming a target signal to frequency domain, time information is lost. DWT uses a time-scale region. This paper proposes an advanced fault detection algorithm using DWT(discrete Wavelet transform) to enhance the drawback of conventional DFT based relaying. To evaluate the performance of the proposed relaying, we used the test data which were sampled with 720 [Hz] per cycle and obtained from ATP(alternative transient program) simulation. And we made a comparative study of conventional DFT based RDR and the proposed relaying.

A study with multi-winding of double excited type LDM (양측 여자형 LDM의 다권선화에 관한 연구)

  • Lee, S.M.;Baek, S.H.;Kim, Y.;Yoon, S.Y.;Maeng, I.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.290-293
    • /
    • 2000
  • In this paper, by designing the width of the stator coil, double sided excitation LDM with multi-separated winding which is possible to obtain the constant thrust force is proposed. Using Permeance method, equvalent magnetic circuit method, Maxwell 2D, which is the magnetic field analysis package, we were analyzed and proved the validity of design process, also the characteristics of LDM according to magnet vs. coil width ratio of LDM was almost in accord with the experiment results.

  • PDF

Analysis on Hysteresis Characteristics of Flux-Lock Type HTSC Fault Current Limiter (자속구속형 고온초전도 사고전류 제한기의 히스테리시스 특성 분석)

  • Lim, Sung-Hun;Han, Byoung-Sung;Park, Hyoung-Min;Cho, Yong-Sun;Han, Tae-Hee;Do, Ho-Ik;Choi, Hyo-Sang
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.493-495
    • /
    • 2006
  • The hysteresis characteristics of flux-lock reactor, which is an essential component of flux-lock type superconducting fault current limiter (SFCL), was investigated. The hysteresis loss of iron core in flux-lock type SFCL does not happen due to its winding's structure especially in the normal state. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. Through the hysteresis curves together with the fault current level due to the inductance ratio for the 1st and 2nd windings, the increase of the number of turns in the 2nd winding of the flux-lock type SFCL had a role to prevent the iron core from saturation.

  • PDF

A Selection of an Optimal Mother Wavelet for Stator Fault Detection of AC Generator (교류 발전기 고정자 사고 검출을 위한 최적 마더 웨이브릿의 선정)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.377-382
    • /
    • 2008
  • For stator winding protection of AC generator, KCL(Kirchhoff's Current Law) is widely applied. Actually a CRDR(Current Ratio Differential Relay) based on DFT(Discrete Fourier Transform) has been used for protecting generator. It has been pointed out that defects can occur during the process of transforming a time domain signal into a frequency domain one which can lead to loss of time domain information. Wavelets techniques are proposed for the analysis of power system transients. This paper introduces an algorithm to choose a suitable Mother Wave1et for generator stator fault detection. For optimal selection, we analyzed db(Daubechies), sym(Symlets), and coif(Coiflects) of Mother Wavelet. And we compared with performance of the choice algorithm using detail coefficients energy and RMS(root mean square) error. It can be improved the reliability of the conventional DFT based CRDR. The feasibility and effectiveness of the proposed scheme is proved with simulation using collected data obtained from ATP (Alternative Transient Program) package.

Improved LCCT Z-Source DC-AC Inverter for Ripple Reduction of Input Current and Capacitor Voltage (입력전류와 커패시터 전압의 맥동저감을 위한 개선된 LCCT Z-소스 DC-AC 인버터)

  • Shin, Yeon-Soo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1432-1441
    • /
    • 2012
  • In this study, an improved LCCT(Inductor-Capacitor-Capacitor-Trans) Z-source inverter(Improved LCCT ZSI) with characteristics of Quasi Z-source inverter(QZSI) and LCCT Z-source inverter(LCCT ZSI) is proposed. The proposed inverter can also reduce the voltage stress and input current/capacitor voltage ripples compared with conventional LCCT ZSI and Quasi ZSI. A two winding trans in Z-impedance network of the conventional LCCT ZSI is replaced by a three winding trans in the proposed inverter. To verify the validity of the proposed inverter, a DSP controlled hardware was made and PSIM simulation was executed for each method. Comparing the current and voltage ripples of each method under the condition of input DC voltage 70[V] and output AC voltage 76[Vrms], the input current and capacitor voltage ripple factors of the proposed inverter were low as 11[%] and 1.4[%] respectively. And, for generation of the same output AC voltage of each method, voltage stress of the proposed inverter was low as 175[V] under the condition of duty ratio D=0.15. As mentioned above, we could know that the proposed inverter have the characteristics of low voltage stress, low ripple factor and low operation duty ratio compared with the conventional methods. Finally, the efficiency according to load change/duty ratio and the transient state characteristics were discussed.

A Protective Relaying Algorithm for Transformers Using the Ratio of Induced Voltages (유기전압비를 이용한 변압기 보호계전 알고리즘)

  • Kang, Y.C.;Lee, B.E.;Yun, J.S.;Ok, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.168-170
    • /
    • 2000
  • This paper presents a protective relaying algorithm for transformers using the ratio of induced voltages. The ratio primary and secondary induced voltages calculated calculates from currents and voltages of primary and secondary windings is used. In case of the steady state and magnetic inrush, it is equal to the turn ratio while it is different from the turn ratio in case of internal winding faults. The proposed algorithm operates satisfactorily even large residual flux.

  • PDF

Flux Linkages Ratio-Based Transformer Protection (쇄교자속비를 이용한 변압기 보호)

  • 강용철;이병은;김은숙;원성호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.11
    • /
    • pp.655-660
    • /
    • 2003
  • This paper describes a transformer protective relaying algorithm based on the ratio of increments of flux linkages (RIFL) of the primary and secondary windings. The algorithm uses integration approximation. The RIFL is equal to the turns ratio for all operating conditions except for an internal fault. For a single-phase transformer and a Y-Y transformer, the increments of flux linkages (IFL) are calculated. For a Y-$\Delta$ transformer, the difference of IFL are calculated to use the line currents rather than the delta winding currents, which are unavailable. Their ratios are compared with the turns ratio. The comparative study between the proposed and conventional differentiation approximation methods was conducted. The test results show that the algorithm reduces the approximation errors of the conventional methods.

Torque Characteristics Analysis of Interior Permanent Magnet Synchronous Motor According to Pole Arc Ratio (극호비 변화에 따른 영구자석 매입형 동기전동기의 토크 특성 해석)

  • LEE Kab-Jae;Kim Ki-Chan;Lee Jong-In;Kwon Joong-Lok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • The torque characteristics of permanent magnet(PM) motor is varied according to magnet width. In this paper, the design method of magnet and magnetic circuit is proposed in order to improve the torque of Interior Permanent Magnet Synchronous Motor(IPMSM). This paper presents the effects of pole arc ratio and salient pole ratio on the torque and torque ripple in the IPMSM with concentrated winding.

Deep Hole Drilling by Using Periodical Change of Feedrate (주기적 이송속도 변화를 이용한 심공드릴가공)

  • 왕덕현;이윤경;김원일;김용제
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.103-110
    • /
    • 2000
  • Experimental study of drilling for duralumin A2024 was conducted with intermittently accelerated and decelerated feedrate. It is achieved through a programmed periodic increase and decrease in the feedrate using a machining center. The following experimental results were performed with the objective of solving chip to disposal problems. In conventional drilling of aluminum, long continuous chips are produced with winding around the drill and causing difficulties in eliminating chips from the cutting zone. In order to acquire the basic data necessary to regulate the chip profile, the relationship between cutting variables and chip shape was investigate. The following conclusions are established from the experimental results. At a suitable feed fluctuation ratio, intermittently decelerated feed drilling proved successful in braking chips to appropriate lengths while maintaining stable cutting. Thus, it is an effective method for improving chip disposal. The amplitude of the dynamic component of cutting force in intermittent feed drilling is influenced by the feed fluctuation ratio.

  • PDF