• Title/Summary/Keyword: Winding layers

Search Result 34, Processing Time 0.022 seconds

A Study on Optimal Insulation Design of the Distribution Level HTS FCL (배전급 고온초전도 한류기 절연설계 최적화 연구)

  • Seok, B.Y.;Kang, H.;Lee, C.;Nam, K.;Ko, T.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.723-724
    • /
    • 2006
  • In this study, superconducting coil arrangements and cryostat concept design were conducted for the development of 13.2kV/630A bifilar winding type high temperature superconducting(HTS) fault current limiter(FCL) with YBCO coated conductor(CC) wire. The coil consists of several layers with unique non-inductive solenoid winding method. Six types of HTS coil arrangements were investigated for the optimal insulation design of HTS FCL. And, conceptual design of cryostat was conducted for the decrement of thermal invasion and the prevention of low voltage insulation breakdown in the LHe which is used as pressurization gas in sub-cooling condition of liquid nitrogen(LN2). As the results, it was found that the modified suspended type cryostat with horizontal coil arrangement is beneficial to the insulation design of 13.2kV level bifilar winding type HTS FCL.

  • PDF

A Study on the Insulation Breakdown of Mica-Epoxy Composites (Mica-Epoxy 복합재료의 절연파괴에 관한 연구)

  • Kim, Hui-Gon;Kim, Hui-Su
    • Korean Journal of Materials Research
    • /
    • v.7 no.8
    • /
    • pp.650-653
    • /
    • 1997
  • In large generators in power plants, stator winding insulations is exposed to a combination of thermal, electrical, mechanical, environmental stresses in service. These combined stresses cause insulation aging which leads to final insulation breakdown. In order to identify the breakdown mechanism, the stator winding insulation materials which are composed of mica-epoxy is analyzed by the component of materials with EDS, SEM techniques. We concluded that the potassium ions of mica are replaced by hydrogen ions at boundary area of mica-epoxy and/or mica-mica. It is proposed that through these phenomena, the conductive layers of potassium ions enable high voltage fields of multiple stresses to create voids and microcracks.

  • PDF

Analysis of Current Distribution of Multi-Layer HTSC Power Cable dut to Pitch length and winding direction (피치길이와 결선방향에 따른 다층 고온초전도 전력케이블의 전류분류 분석)

  • Lee Jong-Hwa;Lim Sung-Hun;Ko Seokcheol;Park Chung-Ryul;Han Byoung-Sung;Hwang Si Dole
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1133-1135
    • /
    • 2004
  • Superconducting transmission power cable is one of interesting parts in power application using high temperature superconducting wire. One of important parameters in high-temperature superconducting (HTSC) cable design is transport current distribution because it is related with current transmission capacity and ac loss. In this paper, the transport current and magnetic field distributions at conducting layers were investigated through the analysis of the equivalent circuit for HTSC power cable with shield layer. The transport current distribution due to the pitch length and winding direction was improved in case of HTSC power cable with shield layer.

  • PDF

A Study of Optimum Insulation Conditions of a HTS Power Cable Cryostat (고온초전도 전력케이블 저온용기의 최적단열설계에 관한 연구)

  • Koh, Deuk-Yong;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.333-338
    • /
    • 2007
  • The object of this study is to find the optimal insulation design conditions of a HTS power cable cryostat. The optimum condition of a cable cryostat is obtained by varying types of MLIs, cable core weights, spacer diameters, winding pitches and MLI layer numbers. As the weight of cable core is increased, conduction heat transfer from surroundings to cable cryostat is increased. But as the spacer pitch is increased from 120 mm to 200 mm, the heat leak of cable cryostat remains almost constant. The optimal number of MLI layers is suggested. Double ply MLI is more effective than triple ply MLI and the insulation effect is best when the number of MLI layers is 36.

Development of 22,000Ton Hydraulic Press for the Forming of Heat Plate with Ultra-Large Size (초대형 열교환기용 열판 성형을 위한 22,000Ton급 유압 프레스 개발)

  • Lim S. J.;Park H. J.;Yoon D. J.;Kim E. Z.;Lim H.;Na K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.166-169
    • /
    • 2001
  • 22,000 Ton hydraulic press was developed using wire winding method. The hydraulic press consists of three piece of frame type. The outer layers of yoke-column frame and main cylinder linear were wound with piano wire(1mm${\times}$4mm) under controlled tension and the total length of wound wire was about 450Km. The developed hydraulic press is used for the forming of heat plate with ultra-large size. To obtain large force with relative small apparatus, high pressure of $1,500 Kgf/cm^2$ was supplied to main cylinder through pressure amplification by booster pump. Therefore sealing technique of main cylinder is so crucial that the seals were made of mitre ring type with super-elastic metal. The press total weight is about 150 tons, which is quite light and compact relative to that of conventional hydraulic press.

  • PDF

Optimization on Weight of High Pressure Hydrogen Storage Vessel Using Genetic Algorithm (유전 알고리즘을 이용한 고압 수소저장용기 중량 최적화)

  • Lee, Y.H.;Park, E.T.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.203-211
    • /
    • 2019
  • In this study, the weight of type IV pressure vessel is optimized through the burst pressure condition using the finite element analysis (FEA) based on the genetic algorithm (GA). The optimization design variables include the thickness of composite layers and the winding angles. The optimized design variables are validated using the numerical simulations for the pressure vessel. Consequently, the weight is decreased by about 6.5% as compared to the previously reported results for Type III pressure vessel. Additionally, a method which reduces the entire optimization time is proposed. In the original method, the population size is constant across all generations. However, the proposed method could reduce the workload through the reduction of the population size by half for every 25 generations. Thus, the proposed method is observed to increase the weight by about 0.1%, however, the working time for the optimization could be decreased by about 46.5%.

Strength Safety Evaluation of Composite Pressure Container for Hydrogen Fuel Tanks (수소연료탱크용 복합소재 압력용기에 관한 강도안전성 평가연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.30-34
    • /
    • 2011
  • This paper presents a strength safety evaluation of composite pressure container for hydrogen fuel tanks with a storage capacity of 104 liter and 70MPa pressure. The carbon fiber composite container is manufactured by an aluminum liner of Al6061-T6 and composite multi-layers of hoop winding layer in circumferential direction, $12^{\circ}C$ inclined winding layer and $70^{\circ}C$winding layer in helical direction respectively. The FEM results on the strength safety of composite fuel tanks were evaluated with a criterion of design safety of US DOT-CFFC and KS B ISO 11119-2 codes. The FEM computed results indicate that the proposed design model of 104 liter composite container is safe based on two strength safety codes. But, the computed results of carbon fiber fuel tanks based on US DOT-CFFC code is safer compared with that of KS B ISO 11119-2. Thus the hydrogen gas pressure container of 70MPa may be evaluated and designed by US DOT-CFFC code for more strength safety.

A Study on the Breakdown Mechanism of Rotating Machine Insulation

  • Kim, Hee-Gon;Kim, Hee-Soo;Park, Yong-Kwan
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.71-76
    • /
    • 1997
  • A lot of experiments and analyses have been done to determine the aging mechanism of mica-epoxy composite material used for large generator stator windings in order to estimate remaining life of the generator for last decades. After degrading artificially the mica-epoxy composite material, the surface analysis is performed to analyze breakdown mechanism of insulation in air and hydrogen atmosphere; i) In the case of air atmosphere, it is observed that an aging propagation from conductor to core by partial discharge effect and the formation of cracks between layers is widely carbonized surface. ii) In case of hydrogen atmosphere, the partial discharge effect is reduced by the hydrogen pressure (4kg/$\textrm{cm}^2$). Potassium ions forming a sheet of mica is replaced by hydrogen ions, which can lead to microcracks. It is confirmed that the sizes of crack by SEM analysis are 10∼20[$\mu\textrm{m}$] in length under air, and 1∼5[$\mu\textrm{m}$] in diameter, 10∼50[$\mu\textrm{m}$] in length under hydrogen atmosphere respectively. The breakdown mechanism of sttor winding insulation materials which are composed of mica-epoxy is analyzed by the component of materials with EDS, SEM techniques. We concluded that the postassium ions of mica components are replaced by H\ulcorner, H$_3$O\ulcorner at boundary area of mica-epoxy and/or mica-mica. It is proposed that through these phenomena, the conductive layers of potassium enable creation of voids and cracks due to thermal, mechanical, electrical and environmental stresses.

  • PDF

A Study on the Composition of Superconducting Power Cable Using the Multi-cable (멀티케이블을 이용한 초전도 전력케이블의 구성에 관한 연구)

  • Choi, S.J.;Lee, S.J.;Sim, K.D.;Cho, J.W.;Lee, S.K.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.42-46
    • /
    • 2010
  • The HTS power cable is composed of 2 layers for transmission and 1 layer for shield. The superconducting tapes of transmission layers and shield layer are wound in a cylindrical shape with a winding pitch. The radius of cylinder and the number of superconducting tapes are decided considering to the transmission current capacity and the critical current of superconducting tapes. The increasement of transmission current capacity will increase in volume of HTS cable system. In this paper, the composition method of supercondcuting power cable using the multi-cable is presented. The coated conductor tape can be wound on the smaller cylinder because it has the smaller critical bending diameter than the BSCCO tape. A small-scale cable was composed using the coated conductor tapes and a multi-cable is composed using a small-scale cable considering to transmission current capacity. Even increase of transmission current capacity, this method has advantage that the HTS superconducting power cable can be composed easily. The 22.9 kV and 154 kV superconducting power cable was composed using the presented method.

The Effects of Affecting Ratios on the Strength Safety of a Composite Fuel Tank for FEV Vehicles (FEV 자동차용 복합소재 연료탱크의 강도안전성에 미치는 기여율에 관한 해석적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • The purpose of this paper is to analyze affecting ratios of strength safety in carbon fiber layer thickness of a composite fuel tank for FEV vehicles. To investigate affecting ratios by FEM modeling, the equivalent von Mises stress has been computed on the aluminum liner and carbon fiber layers of composite fuel tanks in hoop and helical directions respectively. According to the FEM results, the affecting ratios of an aluminum liner on the equivalent stress are 77.5% in hoop direction, 18.11% in $70^{\circ}C$ winded helical direction and 4.39% in $12^{\circ}C$ winded helical direction. These trends on the strength safety of carbon fiber layers have been shown as those of an aluminum liner even though the layer thickness ratio of $12^{\circ}C$ inclined carbon fiber is very high of 42% compared with that of hoop layer thickness. Thus, the computed results show that the strength safety of a carbon fiber fuel tank is more influenced by the winding angle rather than the fiber thickness of carbon fiber layers.