• Title/Summary/Keyword: WindSim

Search Result 379, Processing Time 0.025 seconds

Case Study of Wind Farm Design Using OpenWind - Youngdeok Wind Farm (OpenWind를 이용한 풍력단지설계 사례연구 -영덕풍력단지)

  • Kim, Hyun-Goo;Hwang, Hyo-Jeong;Kim, Ju-Hyun;Ko, Soo-Hee;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1169-1175
    • /
    • 2010
  • A case study for the design of a wind farm in complex terrain was carried out using the wind farm site analysis software OpenWind, which has an open-source platform and is free to use. The Youngdeok Wind Farm, constructed on mountainous terrain in Korea, was chosen as a model site; the design process reproduced using OpenWind. A comparison of the positions of the wind turbine derived from the OpenWind optimization process and the current positions were in good agreement. The annual energy production predicted by OpenWind compared with the prediction by the micrositing software, WindSim, were also validated to within 1%. Therefore, it was confirmed that OpenWind can be used for a practical wind farm design project. It is also anticipating that this paper will provide a prototype process for the design of a wind farm site and offer a database for the post-evaluation of a constructed wind farm in Korea.

Sensitivity Analysis of Wind Resource Micrositing at the Antarctic King Sejong Station (남극 세종기지에서의 풍력자원 국소배치 민감도 분석)

  • Kim, Seok-Woo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • Sensitivity analysis of wind resource micrositing has been performed through the application case at the Antarctic King Sejong station with the most representative micrositing softwares: WAsP, WindSim and Meteodyn WT. The wind data obtained from two met-masts separated 625m were applied as a climatology input condition of micro-scale wind mapping. A tower shading effect on the met-mast installed 20m apart from the warehouse has been assessed by the CFD software Fluent and confirmed a negligible influence on wind speed measurement. Theoretically, micro-scale wind maps generated by the two met-data located within the same wind system and strongly correlated meteor-statistically should be identical if nothing influenced on wind prediction but orography. They, however, show discrepancies due to nonlinear effects induced by surrounding complex terrain. From the comparison of sensitivity analysis, Meteodyn WT employing 1-equation turbulence model showed 68% higher RMSE error of wind speed prediction than that of WindSim using the ${\kappa}-{\epsilon}$ turbulence model, while a linear-theoretical model WAsP showed 21% higher error. Consequently, the CFD model WindSim would predict wind field over complex terrain more reliable and less sensitive to climatology input data than other micrositing models. The auto-validation method proposed in this paper and the evaluation result of the micrositing softwares would be anticipated a good reference of wind resource assessments in complex terrain.

Design criteria of wind barriers for traffic -Part 1: wind barrier performance

  • Kwon, Soon-Duck;Kim, Dong Hyawn;Lee, Seung Ho;Song, Ho Sung
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2011
  • This study investigates the design criteria required for wind barriers to protect vehicles running on an expressway under a high side wind. At the first stage of this study, the lateral deviations of vehicles in crosswinds were computed from the commercial software, CarSim and TruckSim, and the critical wind speeds for a car accident were then evaluated from a predefined car accident index. The critical wind speeds for driving stability were found to be 35 m/s for a small passenger car, yet 30 m/s for a truck and a bus. From the wind tunnel tests, the minimum height of a wind barrier required to reduce the wind speed by 50% was found to be 12.5% of the road width. In the case of parallel bridges, the placement of two edge wind barriers plus one wind barrier at center was recommended for a separation distance larger than 20 m (four lanes) and 10 m (six lanes) respectively, otherwise two wind barriers were recommended.

Long-Term Wind Resource Mapping of Korean West-South Offshore for the 2.5 GW Offshore Wind Power Project

  • Kim, Hyun-Goo;Jang, Moon-Seok;Ko, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1305-1316
    • /
    • 2013
  • A long-term wind resource map was made to provide the key design data for the 2.5 GW Korean West-South Offshore Wind Project, and its reliability was validated. A one-way dynamic downscaling of the MERRA reanalysis meteorological data of the Yeongwang-Gochang offshore was carried out using WindSim, a Computational Fluid Dynamics based wind resource mapping software, to establish a 33-year time series wind resource map of 100 m x 100 m spatial resolution and 1-hour interval temporal resolution from 1979 to 2012. The simulated wind resource map was validated by comparison with wind measurement data from the HeMOSU offshore meteorological tower, the Wangdeungdo Island meteorological tower, and the Gochang transmission tower on the nearby coastline, and the uncertainty due to long-term variability was analyzed. The long-term variability of the wind power was investigated in inter-annual, monthly, and daily units while the short-term variability was examined as the pattern of the coefficient of variation in hourly units. The results showed that the inter-annual variability had a maximum wind index variance of 22.3% while the short-term variability, i.e., the annual standard deviation of the hourly average wind power, was $0.041{\pm}0.001$, indicating steady variability.

Earthward Flow Bursts in the Magnetotail Driven by Solar Wind Pressure Impulse

  • Kim, Khan-Hyuk;Kwak, Young-Sil;Lee, Jae-Jin;Hwang, Jung-A
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.375-382
    • /
    • 2008
  • On August 31, 2001, ${\sim}$ 1705 - 1718 UT, Cluster was located near the midnight magnetotail, GSE (x, y, z) ${\sim}$ (-19, - 2,2) RE, and observed fast earthward flow bursts in the vicinity of the neutral sheet. They occurred while the tail magnetic field suddenly increased. Using simultaneous measurements in the solar wind, at geosynchronous orbit, and on the ground, it is confirmed that tail magnetic field enhancement is due to an increased solar wind pressure. In the neutral sheet region, strongly enhanced earthward flow bursts perpendicular to the local magnetic field $(V_{{\perp}x})$ were observed. Auroral brightenings localized in the pre-midnight sector (${\sim}$ 2200 - 2400 MLT) occurred during the interval of the $V_{{\perp}x}$ enhancements. The $V_{{\perp}x}$ bursts started ${\sim}$ 2 minutes before the onset of auroral brightenings. Our observations suggest that the earthward flow bursts are associated with tail reconnection directly driven by a solar wind pressure impulse and that $V_{{\perp}x}$ caused localized auroral brightenings.

Comparison of finite element analysis with wind tunnel test on stability of a container crane (컨테이너 크레인의 안정성에 대한 풍동실험과 유한요소해석의 비교)

  • Han, D.S.;Lee, S.W.;Han, G.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.29-35
    • /
    • 2008
  • This study is conducted to provide the proper analysis method to evaluate the stability of a container crane under wind load. Two analysis method, namely structure analysis and fluid-structure interaction, are adopted to evaluate the stability of a container crane in this investigation. To evaluate the effect of wind load on the stability of the crane, 50-ton class container crane widely used in container terminals is adopted for analysis model and 19-values are considered for wind direction as design parameter. We conduct structure analysis and fluid-structure interaction for a container crane with respect to the wind direction using ANSYS and CFX. Then we compare the uplift forces yielded from two analysis with it yielded from wind tunnel test. The results are as follows: 1) A correlation coefficient between structure analysis and wind tunnel test is lower than 0.65(as $0.29{\sim}0.57$), but between fluid-structure interaction and wind tunnel test is higher than 0.65(as $0.78{\sim}0.86$). 2) There is low correlation between structure analysis and wind tunnel test but very high correlation between fluid-structure interaction and wind tunnel test.

  • PDF

Study on the Change of Wind Field and Temperature According to Location of High-rise Building Using Micrometeorology Numerical Model (미기상 수치 모델을 이용한 고층아파트 입지에 따른 바람장 및 기온 변화 연구)

  • Seo, Houng-Seok;Kim, Yoo-Gon;Young, Go-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.340-352
    • /
    • 2011
  • This study was carried out to analyze the change of wind filed and heat island according to the location of the high rise building using micrometeorology numerical model Envi-met3.0. In this study, the real urban planning of Jeonju city was used as input for the location and height of buildings. Modeling was performed for two conditions as input data. Case 1 is that wind direction is SSE and case 2 is W. To analyse the change of wind filed, wind speed results were used. To analyze the change of heat island, temperature results were used. Below the building height, wind speed increased 0.2~2.5 m/s at the inflow area and decreased 0.5~2.0 m/s at the area between the buildings. Above the building height, wind speed decreased 0.1~0.8 m/s near the building complex. On the other hand, wind speed increased 0.2~0.4 m/s in the outside area of the building complex. In the case of temperature, below the building height, temperatures increased $0.01{\sim}0.1^{\circ}C$ in the building complex and leeward area. On the other hand, temperature decreased $0.01{\sim}0.005^{\circ}C$ in the outside area of the building complex. Above the buildings height, temperatures decreased $0.05{\sim}0.2^{\circ}C$ in most of the area.

Investigation and Greenhouse Heat Loss based on Areas and Weather Information (온실 열손실 분석용 기상정보 및 온실방위 조사 분석)

  • Kim, Young Hwa;Kang, Sukwon;Paek, Yee;Jang, Jae Kyung;Sung, Je Hoon;Kang, Yeon Koo
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.64-70
    • /
    • 2018
  • In this study, eleven major coastal areas were selected and the climate environment and the greenhouse direction were analyzed. This research investigates the greenhouse heat loss according to the wind environment at target areas. The target areas were selected based on heated greenhouse cultivation area and wind environment standard. Temperature, wind speed, and wind direction among weather data for 30 years were collected and analyzed. The data were divided into the minimum, average, and maximum temperatures and the Meteorological Agency criteria applied to the weather and wind direction criteria. Data were collected in the range of $0{\sim}180^{\circ}$ considering the symmetry of the shape of the greenhouse. In addition, the wind direction is different for each region and the applied wind direction can be different when referring to the longitudinal direction of the greenhouse and the data are collected in the range of $0{\sim}90^{\circ}$. The results of this study are expected to be used to calculate the heating load of greenhouse installed in places wind speed high.

Wind Resource Assessment for Green Island - Dokdo (녹색섬 풍력자원평가 - 독도)

  • Kim, Hyun-Goo;Kim, Keon-Hoon;Kang, Young-Heaok
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.94-101
    • /
    • 2012
  • A Dokdo wind resource map has been drawn up for the Green Island Energy Master Plan according to Korea's national vision for 'Low Carbon Green Growth'. The micro-siting software WindSim v5.1,which is based on Computational Flow Analysis, is used with MERRA reanalysis data as synoptic climatology input data, and sensitivity analysis on turbulence model is accompanied. A wind resource assessment has been conducted for the Dokdo wind power dissemination plan, which consists of two 10kW wind turbines to be installed at the Dongdo dock and Dokdo guard building. It is evaluated that the capacity factors at Dongdo dock and Dokdo guard building are about 20% and 30% respectively, and annual and hourly variations of wind power generation have been analyzed, but summertime energy production is predicted to be only 40% of wintertime energy production.

Accounting for the Atmospheric Stability in Wind Resource Variations and Its Impacts on the Power Generation by Concentric Equivalent Wind Speed (동심원 등가풍속을 이용한 대기안정도에 따른 풍력자원 변화에 관한 연구)

  • Ryu, Geon-Hwa;Kim, Dong-Hyeok;Lee, Hwa-Woon;Park, Soon-Young;Yoo, Jung-Woo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.49-61
    • /
    • 2016
  • The power production using hub height wind speed tends to be overestimated than actual power production. It is because the hub height wind speed cannot represent vertical wind shear and blade tip loss that aerodynamics characteristic on the wind turbine. The commercial CFD model WindSim is used to compare and analyze each power production. A classification of atmospheric stability is accomplished by Monin-Obukhov length. The concentric wind speed constantly represents low value than horizontal equivalent wind speed or hub height wind speed, and also relevant to power production. The difference between hub height wind speed and concentric equivalent wind speed is higher in nighttime than daytime. Under the strongly convective state, power production is lower than under the stable state, especially using the concentric equivalent wind speed. Using the concentric equivalent wind speed considering vertical wind shear and blade tip loss is well estimated to decide suitable area for constructing wind farm.