• Title/Summary/Keyword: Wind-wave Interaction

Search Result 67, Processing Time 0.026 seconds

Computation of Nonlinear Energy Transfer among Wind Seas (비선형 상호작용에 의한 풍파 성분간 에너지 전달의 계산)

  • 오병철;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.7-19
    • /
    • 1999
  • The energy transfer between sea-wave components by way of nonlinear wave-wave interactions plays a central role in spectral evolution. Since huge calculation time is required to exact computation of the resulting Boltzmann integral, however, the exact nonlinear energy transfer has not been directly introduced into operational wave models. Thus, effective calculation methods were examined in the present study which exploit the scale property of a scattering coefficient and the detailed balance of interactions. The improved Webb's method (IWM) has inherent stability because singularities degenerate into a negligible point. The improved Masuda's method (IMM) makes a quasi-analytical treatment of the inherent singularities and requires only 1.3 seconds of computer time via Pentium 300MHz processor. The IMM is, therefore, projected to be very useful for theoretical researches in spectral evolution with fetch- or duration-limited situations.

  • PDF

Numerical Analysis of Dynamic Response of Floating Offshore Wind Turbine to the Underwater Explosion using the PML Non-reflecting Technique (PML 무반사 기법을 이용한 부유식 해상풍력발전기의 수중폭발에 따른 동응답 수치해석)

  • Cho, Jin-Rae;Jeon, Soo-Hong;Jeong, Weui-Bong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.521-527
    • /
    • 2016
  • This paper is concerned with the numerical analysis of dynamic response of floating offshore wind turbine subject to underwater explosion using an effective non-reflecting technique. An infinite sea water domain was truncated into a finite domain, and the non-reflecting technique called the perfectly matched layer(PML) was applied to the boundary of truncated finite domain to absorb the inherent reflection of out-going impact wave at the boundary. The generalized transport equations that govern the inviscid compressible water flow was split into three PML equations by introducing the direction-wise absorption coefficients and state variables. The fluid-structure interaction problem that is composed of the wind turbine and the sea water flow was solved by the iterative coupled Eulerian FVM and Largangian FEM. And, the explosion-induced hydrodynamic pressure was calculated by JWL(Jones-Wilkins-Lee) equation of state. Through the numerical experiment, the hydrodynamic pressure and the structural dynamic response were investigated. It has been confirmed that the case using PML technique provides more reliable numerical results than the case without using PML technique.

Observation and Analysis of Turbulent Fluxes Observed at Ieodo Ocean Research Station in Autumn 2014 (2014년 가을철 이어도 종합과학기지에서의 난류 플럭스의 관측 및 분석)

  • Yun, Junghee;Oh, Hyoeun;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.707-718
    • /
    • 2015
  • This study investigates the characteristics of turbulent fluxes observed at Ieodo Ocean Research Station (IORS) in autumn 2014. The 10 Hz IORS data is quality controlled and calculated to be the 30 minutes turbulent fluxes. The quality control consists of five steps: a weather check, Vickers and Mahrt (VM) sequential check, VM parallel check, flag check, and direction check. Since the IORS is an open-sea station with no orographic influence, there are no significant diurnal variations for the turbulent fluxes and 10 m wind speed. According to stabilities, the unstable and semi-unstable states appear more than 28% and 70% in autumn, respectively and they have strong winds of over $10m\;s^{-1}$. In addition, the turbulent fluxes increase with increasing wind speed. In particular, the latent heat flux and its deviations are clearly shown because the latent heat flux is influenced by the change of both the sea surface roughness and wave height induced by the wind. To demonstrate the changes of the turbulent fluxes before and after typhoon, Vongpong (1419), which is the most intense typhoon affecting the Korean Peninsula in 2014, is considered. The turbulent flux fluctuates in accordance with the location of Vongpong. The turbulent fluxes have a large (small) variation when Vongpong approaches (retreats) at the IORS. The overall results represent that the IORS data helps us understand physical processes related to air-sea interaction by providing the valuable and reliable observed data.

Study of the Kinetic Effects on Relativistic Unmagnetized Shocks using 3D PIC Simulations

  • Choi, Eun Jin;Min, Kyoung W.;Choi, Cheongrim;Nishikawa, Ken-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.101.2-101.2
    • /
    • 2012
  • Shocks are ubiquitous in astrophysical plasmas: bow shocks are formed by the interaction of solar wind with planetary magnetic fields, and supernova explosions and jets produce shocks in interstellar and intergalactic spaces. The global morphologies of these shocks are usually described by a set of magnetohydrodynamic (MHD) equations which tacitly assumes local thermal equilibrium, and the resulting Rankine-Hugoniot shock jump conditions are applied to obtain the relationship between the upstream and downstream physical quantities. While thermal equilibrium can be achieved easily in collisional fluids, it is generally believed that collisions are infrequent in astrophysical settings. In fact, shock widths are much smaller than collisional mean free paths and a variety of kinetic phenomena are seen at the shock fronts according to in situ observations of planetary shocks. Hence, both the MHD and kinetic equations have been adopted in theoretical and numerical studies to describe different aspects of the physical phenomena associated with astrophysical shocks. In this paper, we present the results of 3D relativistic particle-in-cell (PIC) simulations for ion-electron plasmas, with focus on the shock structures: when a jet propagates into an unmagnetized ambient plasma, a shock forms in the nonlinear stage of the Weibel instability. As the shock shows the structures that resemble those predicted in MHD systems, we compare the results with those predicted in the MHD shocks. We also discuss the thermalization processes of the upstream flows based on the time evolutions of the phase space and the velocity distribution, as well as the wave spectra analyses.

  • PDF

The effect of typhoon translation speed and landfall angle on the maximum surge height along the coastline

  • Qian, Xiaojuan;Son, Sangyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.153-153
    • /
    • 2021
  • Storm Storm event is one of major issues in South Korea due to devastating damage at its landfall. A series of statistical study on the historical typhoon records consistently insist that the typhoon translation speed (TS) is on slowdown trend annually, and thus provides an urgent topic in assessing the extreme storm surge under future climate change. Even though TS has been regarded as a principal contributor in storm surge dynamics, only a few studies have considered its impact on the storm surge. The landfall angle (LA), another key physical factor of storm surge also needs to be further investigated along with TS. This study aims to elucidate the interaction mechanism among TS, LA, coastal geometry, and storm surge synthetically by performing a series of simulations on the idealized geometries using Delft3D FM. In the simulation, various typhoons are set up according to different combinations of TS and LA, while their trajectories are assumed to be straight with the constant wind speed and the central pressure. Then, typhoons are subjected to make landfall over a set of idealized geometries that have different depth profiles and layouts (i.e., open coasts or bays). The simulation results show that: (i) For the open coasts, the maximum surge height (MSH) increases with increasing TS. (ii) For the constant bed level, a typhoon normal to the coastline resulted in peak MSH due to the lowest effect of the coastal wave. (iii) For the continental shelf with different widths, the slow-moving typhoon will generate the peak MSH around a small LA as the shelf width becomes narrow. (iv) For the bay, MSH enlarges with the ratio of L/E (the length of main-bay axis /gate size) dropping, while the greatest MSH is at L/E=1. These findings suggest that a fast-moving typhoon perpendicular to the coastline over a broad continental shelf will likely generate the extreme storm surge hazard in the future, as well as the slow-moving typhoon will make an acute landfall over a narrow continental shelf.

  • PDF

Erosion and Recovery of Coastal Dunes after Tropical Storms (태풍의 통과로 인한 해안사구 지형의 침식과 회복)

  • Choi, Kwang Hee;Jung, Pil Mo;Kim, Yoonmi;Suh, Min Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.1
    • /
    • pp.17-27
    • /
    • 2012
  • Coastal dunes help stabilize the coastal landscape and protect the hinterland through dynamic interaction with sand beaches. Sometimes dune erosion occurs during the tropical cyclones, while dune recovery may naturally follow after the event. As the typhoon Kompasu passed through the Korean Peninsula early-September in 2010, it caused a rise in water in association with the storm, wave run-ups, and heavy rains in coastal areas. As the result, coastal dunes along the west coast of Korea were severely damaged during the storm. However, the degree and extent of erosion and recovery of dunes were found to be related with the condition of beach-dune systems including gradients of foreshore and front slope of the dune, sediment supply, vegetation, wind activity, and human interferences. Some dunes retreated landward more and more after the erosional event, while others recovered its original profile by aeolian transport processes mainly during the winter season. Vegetated dunes with pine trees were less recovered after the erosion than grass-covered dunes. In addition, dunes with artificial defense were more eroded and less recovered than those without hard constructions. According to the observation after the severe storm, it is likely that the sand transport process is critical to the dune recovery. Therefore, the interactions between beach and dune must be properly evaluated from a geomorphological perspective for the effective management of coastal dunes, including natural recovery after the erosion by storm events.

Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea (서해안 곰소만 갯벌 온도의 구조 및 변화)

  • Lee, Sang-Ho;Cho, Yang-Ki;You, Kwang-Woo;Kim, Young-Gon;Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.100-112
    • /
    • 2005
  • Soil temperature was measured from the surface to 40 cm depth at three stations with different heights in tidal flat of Gomso Bay, west coast of Korea, for one month in every season 2004 to examine the thermal structure and the variation. Mean temperature in surface layer was higher in summer and lower in winter than in lower layer, reflecting the seasonal variation of vertically propagating structure of temperature by heating and cooling from the tidal flat surface. Standard deviation of temperature decreased from the surface to lower layer. Periodic variations of solar radiation energy and tide mainly caused short term variation of soil temperature, which was also intermittently influenced by precipitation and wind. Time series analysis showed the power spectral energy peaks at the periods of 24, 12 and 8 hours, and the strongest peak appeared at 24 hour period. These peaks can be interpreted as temperature waves forced by variations of solar radiation, diurnal tide and interaction of both variations, respectively. EOF analysis showed that the first and the second modes resolved 96% of variation of vertical temperature structure. The first mode was interpreted as the heating antl cooling from tidal flat surface and the second mode as the effect of phase lag produced by temperature wave propagation in the soil. The phase of heat transfer by 24 hour period wave, analyzed by cross spectrum, showed that mean phase difference of the temperature wave increased almost linearly with the soil depth. The time lags by the phase difference from surface to 10, 20 and 40cm were 3.2,6.5 and 9.8 hours, respectively. Vertical thermal diffusivity of temperature wave of 24 hour period was estimated using one dimensional thermal diffusion model. Average diffusivity over the soil depths and seasons resulted in $0.70{\times}10^{-6}m^2/s$ at the middle station and $0.57{\times}10^{-6}m^2/s$ at the lowest station. The depth-averaged diffusivity was large in spring and small in summer and the seasonal mean diffusivity vertically increased from 2 cm to 10 cm and decreased from 10 cm to 40 cm. Thermal propagation speeds were estimated by $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;and\;1.7{\times}10^{-4}cm/s$ from 2 cm to 10 cm, 20 cm and 40 cm, respectively, indicating the speed reduction with depth increasing from the surface.