• 제목/요약/키워드: Wind-pressure

검색결과 1,465건 처리시간 0.027초

비정형 초고층 건물의 변동 풍압 (Pressure Fluctuations on Tapered and Setback Tall Buildings)

  • 김용철;칸다 준;타무라 유키오;윤성원
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.97-104
    • /
    • 2013
  • Recent tall buildings tend to have unconventional shapes as a prevailing, which is effective for suppressing across-wind responses. Suppression of across-wind responses is a major factor in tall building projects, and the so called aerodynamic modification method is comprehensively used. The purpose of the present study is to investigate the pressure fluctuations on tapered and setback tall buildings, including peak pressures, power spectra and coherences through the synchronous multi-pressure sensing system techniques. And flow measurements around the models were conducted to investigate the condition of vortex shedding. The results show that by tapering and setback, different distributions of mean pressure coefficients at leeward surface were found, which is caused by the geometric characteristics of the models. And the power spectra of wind pressures at sideward surface become wideband and the peak frequencies are different depending on heights, which makes the correlation near the Strouhal component low or even negative. The differences in shedding frequencies were also confirmed by the flow fields around the models.

Effect of internal angles between limbs of cross plan shaped tall building under wind load

  • Kumar, Debasish;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • 제24권2호
    • /
    • pp.95-118
    • /
    • 2017
  • The present study revealed comparison the pressure distribution on the surfaces of regular cross plan shaped building with angular cross plan shaped building which is being transformed from basic cross plan shaped building through the variation of internal angles between limbs by $15^{\circ}$ for various wind incidence angle from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. In order to maintain the area same the limbs sizes are slightly increased accordingly. Numerical analysis has been carried out to generate similar nature of flow condition as per IS: 875 (Part -III):1987 (a mean wind velocity of 10 m/s) by using computational fluid dynamics (CFD) with help of ANSYS CFX ($k-{\varepsilon}$ model). The variation of mean pressure coefficients, pressure distribution over the surface, flow pattern and force coefficient are evaluated for each cases and represented graphically to understand extent of nonconformities due to such angular modifications in plan. Finally regular cross shaped building results are compared with wind tunnel results obtained from similar '+' shaped building study with similar flow condition. Reduction in along wind force coefficients for angular crossed shaped building, observed for various skew angles leads to develop lesser along wind force on building compared to regular crossed shaped building and square plan shaped building. Interference effect within the internal faces are observed in particular faces of building for both cases, considerably. Significant deviation is noticed in wind induced responses for angular cross building compared to regular cross shaped building for different direction wind flow.

Pressure Sensitive Paint를 이용한 압력장 측정기술의 이미지 등록에 관한 연구 (Assessment of Image Registration for Pressure-Sensitive Paint)

  • 장영기;박상현;성형진
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.271-280
    • /
    • 2004
  • Assessment of image registration for Pressure Sensitive Paint (PSP) was performed. A 16 bit camera and LED lamp were used with Uni-FIB paint (ISSI). Because of model displacement and deformation at 'wind-on' condition, a large error of the intensity ratio was induced between 'wind-on' and' wind-off images. To correct the error, many kinds of image registrations were tested. At first, control points were marked on the model surface to find the coefficients of polynomial transform functions between the 'wind-off' 'wind-on' images. The 2nd-order polynomial function was sufficient for representing the model displacement and deformation. An automatic detection scheme was introduced to find the exact coordinates of the control points. The present automatic detection algorithm showed more accurate and user-friendly than the manual detection algorithm. Since the coordinates of transformed pixel were not integer, five interpolation methods were applied to get the exact pixel intensity after transforming the 'wind-on' image. Among these methods, the cubic convolution interpolation scheme gave the best result.

CFD에 의한 500kW급 수평축 풍력발전용 터빈의 성능평가 및 유동해석에 관한 연구 (A Study of Performance Estimate and Flow Analysis of the 500 kW Horizontal-Axis Wind Turbine by CFD)

  • 김유택;김범석;김정환;남청도;이영호
    • 한국유체기계학회 논문집
    • /
    • 제5권4호
    • /
    • pp.32-39
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine the complex 3-D stall phenomena on the rotor blade and wake distribution of the wind turbine. The flow characteristics of 500kW Horizontal Axis Wind Turbine (HAWT) are compared with the calculated 3-D stall phenomena and wake distribution. We used the CFX-TASCflow to predict flow and power characteristics of the wind turbine. The CFD results are somewhat consistent with the BEM (Blade Element Momentum) results. And, the rotational speed becomes faster, the 3-D stall region becomes smaller. Moreover, the pressure distribution on the pressure side that directly gets the incoming wind grows high as it goes toward the tip of the blade. The pressure distribution on the blade's suction side tells us that the pressure becomes low in the leading edge of the airfoil as it moves from the hub to the tip. However, we are not able to precisely predict on the power coefficient of the rotor blade at the position of generating complex 3-D stall region.

풍하중이 농업시설물의 구조적 안정성에 미치는 영향 -수치해석에 의한 풍력계수분포 산정- (The Effect of Wind Force on Stability of Agricultural Structures - Numerical Calculation of Wind Pressure Coefficients -)

  • 최홍림;손정익
    • 생물환경조절학회지
    • /
    • 제3권1호
    • /
    • pp.10-19
    • /
    • 1994
  • Wind load is known to be one of major forces to influence the stability of agricultural structures. General flow fields were calculated to determine flow characteristics over the envelop of the following three types of greenhouses with arched roof : single span, twin span greenhouses, and two single span greenhouses apart 3m inbetween. Pressure coefficients along the envelop of greenhouse were numerically calculated by the k-$\varepsilon$ turbulence model, which lead to determine wind forces on it. Curvilinear coordinate for an arched roof and the upwind scheme were adopted for the study. The calculated pressure coefficients were validated with the avaliable data of Japanese Standard and NGAM Standard. The Magnitude of calculated forces over the envelop was not in good accordance with data except the windward wall. Even tile data of Japanese and NGAM Standard for validation deviated a lot from each other in quantity and quality. Such discrepancy may be attributed to different geometric and/or flow configuration conditions for experiments, or the insenstivity of the k-$\varepsilon$ turbulence model to recirculation flow.

  • PDF

Effect of aerodynamic modifications on the surface pressure patterns of buildings using proper orthogonal decomposition

  • Tse, K.T.;Chen, Zeng-Shun;Lee, Dong-Eun;Kim, Bubryur
    • Wind and Structures
    • /
    • 제32권3호
    • /
    • pp.227-238
    • /
    • 2021
  • This study analyzed the pressure patterns and local pressure of tall buildings with corner modifications (recessed and chamfered corner) using wind tunnel tests and proper orthogonal decomposition (POD). POD can distinguish pressure patterns by POD mode and more dominant pressure patterns can be found according to the order of POD modes. Results show that both recessed and chamfered corners effectively reduced wind-induced responses. Additionally, unique effects were observed depending on the ratio of corner modification. Tall building models with recessed corners showed fluctuations in the approaching wind flow in the first POD mode and vortex shedding effects in the second POD mode. With large corner modification, energy distribution became small in the first POD mode, which shows that the effect of the first POD mode reduced. Among building models with chamfered corners, vortex shedding effects appeared in the first POD mode, except for the model with the highest ratio of corner modifications. The POD confirmed that both recessed and chamfered corners play a role in reducing vortex shedding effects, and the normalized power spectral density peak value of modes showing vortex shedding was smaller than that of the building model with a square section. Vortex shedding effects were observed on the front corner surfaces resulting from corner modification, as with the side surface. For buildings with recessed corners, the local pressure on corner surfaces was larger than that of side surfaces. Moreover, the average wind pressure was effectively reduced to 88.42% and 92.40% in RE1 on the windward surface and CH1 on the side surface, respectively.

Power spectra of wind forces on a high-rise building with section varying along height

  • Huang, D.M.;Zhu, L.D.;Chen, W.
    • Wind and Structures
    • /
    • 제18권3호
    • /
    • pp.295-320
    • /
    • 2014
  • The characteristics of amplitudes and power spectra of X axial, Y axial, and RZ axial (i.e., body axis) wind forces on a 492 m high-rise building with a section varying along height in typical wind directions are studied via a rigid model wind tunnel test of pressure measurement. Then the corresponding mathematical expressions of power spectra of X axial (across-wind), Y axial (along-wind) and torsional wind forces in $315^{\circ}$ wind directions are proposed. The investigation shows that the mathematical expressions of wind force spectra of the main structure in across-wind and torsional directions can be constructed by the superimposition of an modified wind spectrum function and a peak function caused by turbulent flow and vortex shedding, respectively. While that in along-wind direction can only be constructed by the former and is similar to wind spectrum. Moreover, the fitted parameters of the wind load spectra of each measurement level of altitude are summarized, and the unified parametric results are obtained. The comparisons of the first three order generalized force spectra show that the proposed mathematical expressions accord with the experimental results well.

고속전철 천안역사 내부의 풍압연구 (A Study on Wind Pressure inside Cheonan High Speed Train Station)

  • 원찬식;김사량;허남건
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.843-846
    • /
    • 2002
  • Unlike ordinary train, the HST(High Speed Train) is operated at a very high speed, which may cause pressure transient problems when the HST is passing through a station. In the present study, the wind pressure caused by the passing HST was measured in the Cheonan HST station and compared with the numerical simulations. For the measurement, the HST was passing through the station at speeds of 240 km/h north bound and 150 km/h south bound. MEMS based differential pressure transducers are used to measure pressure variation at various locations in the station. It is shown from the results that measured data are in good agreement with CFD simulation with moving mesh technique for the train movement. With the present validation of CFD simulation, the CFD simulation may effectively aid the design of future HST station.

  • PDF

동해상의 월별 바람응력 및 바람응력컬 분포 (Monthly Wind Stress and Wind Stress Curl Distributions in the Eastern Sea(Japan Sea))

  • 김철호;최병호
    • 물과 미래
    • /
    • 제19권3호
    • /
    • pp.239-248
    • /
    • 1986
  • Monthly wind stress, wind stress curl and volume transport stream functions are computed in the Eastern Sea(Japan Sea) based upon observed wind and atmospheric pressure data respectively. The presented two results show different distributios on locality and season but as common features the results reveal the northwesterly surface wind stress \ulcorner 새 the monsoon in winter, south to southwesterly wind stress \ulcorner 새 the southerly wind in summer and strond anticyclonic curl in the northern part on the Eastern Sea(Japan Sea) in winter. In the distributions obtained from the sea level atmospheric pressure data, the maximum value of the wind stress and of curls of small scales are shown off the southeast coast of Siberia and northeast coast of Korea. Volume transport distributions obtained from the Sverdrup relationship suggest that the strong northward boundary current can be formed along the northeast coast of Korea in winter and weak southward boundary current in summer.

  • PDF

Wind characteristics observed in the vicinity of tropical cyclones: An investigation of the gradient balance and super-gradient flow

  • Tse, K.T.;Li, S.W.;Lin, C.Q.;Chan, P.W.
    • Wind and Structures
    • /
    • 제19권3호
    • /
    • pp.249-270
    • /
    • 2014
  • Through comparing the mean wind profiles observed overland during the passages of four typhoons, and the gradient wind speeds calculated based on the sea level pressure data provided by a numerical model, the present paper discusses, (a) whether the gradient balance is a valid assumption to estimate the wind speed in the height range of 1250 m ~ 1750 m, which is defined as the upper-level mean wind speed, in a tropical cyclone over land, and (b) if the super-gradient feature is systematically observed below the height of 1500 m in the tropical cyclone wind field over land. It has been found that, (i) the gradient balance is a valid assumption to estimate the mean upper-level wind speed in tropical cyclones in the radial range from the radius to the maximum wind (RMW) to three times the RMW, (ii) the super-gradient flow dominates the wind field in the tropical cyclone boundary layer inside the RMW and is frequently observed in the radial range from the RMW to twice the RMW, (iii) the gradient wind speed calculated based on the post-landfall sea level pressure data underestimates the overall wind strength at an island site inside the RMW, and (iv) the unsynchronized decay of the pressure and wind fields in the tropical cyclone might be the reason for the underestimation.