• 제목/요약/키워드: Wind-hybrid

검색결과 345건 처리시간 0.024초

가정용 태양광/풍력 Hybrid 발전시스템의 모니터링에 관한 연구 (A Study on Monitoring for based-Photovoltaic/Wind power Hybrid Generation System)

  • 정병영;차인수;임중열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.365-368
    • /
    • 2006
  • The objective of this research is to investigate usage of 3KW photovoltaic-wind power hybrid generation system composed of 500W solar power generator and 400W wind power generator in a parallel circuit. In addition, solar radiation meter and wind monitor have been installed into each generation system to obtain the practical operating data that monitored in monthly, daily and hourly. These data that are independent to weather change and location would provide adequate generation output on average and cope with emergency situation in generation system In conclusion, based on this study, it could be considered for 3KW combined generation system to be gradually propagated to houses and small-size public facilities.

  • PDF

풍력기반의 하이브리드 발전시스템의 실증연구 (The Demonstration Research on Hybrid Power Generation System Based on Wind Power)

  • 안재영;이화춘;송성근;이상훈;조수억;박성준;김광헌
    • 조명전기설비학회논문지
    • /
    • 제24권10호
    • /
    • pp.106-113
    • /
    • 2010
  • In this paper, the empirical study for a hybrid generation system based on wind power which is leading renewable energy was performed. The simulation for the overall operation of the wind generator, diesel generators, monitoring system and a central controller operated in Demonstration Complex was carried out. In addition, the adequacy of the control algorithm was examined through the experiments.

Study of design parameters on flutter stability of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • 제9권4호
    • /
    • pp.331-344
    • /
    • 2006
  • The cable-stayed-suspension hybrid bridge is a cooperative system developed from the traditional cable-stayed and suspension bridges, and takes some advantages of the two bridge systems. It is also becoming a competitive design alternative for some long and super long-span bridges. But due to its great flexibility, the flutter stability plays an important role in the design and construction of this bridge system. Considering the geometric nonlinearity of bridge structures and the effects of nonlinear wind-structure interaction, method and its solution procedure of three-dimensional nonlinear flutter stability analysis are firstly presented. Parametric analyses on the flutter stability of a cable-stayed-suspension hybrid bridge with main span of 1400 meters are then conducted by nonlinear flutter stability analysis, some design parameters that significantly influence the flutter stability are pointed out, and the favorable structural system of the bridge is also discussed based on the wind stability.

실험실용 독립형 하이브리드 에너지 시스템의 가능성 연구 (Pre-Feasibility Study of Stand-Alone Hybrid Energy System for Applications in a Lab)

  • 이영;최용성;장우새;이경섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.627-631
    • /
    • 2009
  • As renewable and sustainable energy, solar energy and wind energy have advantages in reducing the pollution sources. The paper presents a hybrid system which includes the solar cell and the wind generator. HOMER provides a platform to design and simulate the power system and then to choose the optimization results. This paper simulates with the HOMER and performs a pre-feasibility study of stand-alone hybrid energy systems for applications in a lab.

Separation-hybrid models for simulating nonstationary stochastic turbulent wind fields

  • Long Yan;Zhangjun Liu;Xinxin Ruan;Bohang Xu
    • Wind and Structures
    • /
    • 제38권1호
    • /
    • pp.1-13
    • /
    • 2024
  • In order to effectively simulate nonstationary stochastic turbulent wind fields, four separation hybrid (SEP-H) models are proposed in the present study. Based on the assumption that the lateral turbulence component at one single-point is uncorrelated with the longitudinal and vertical turbulence components, the fluctuating wind is separated into 2nV-1D and nV1D nonstationary stochastic vector processes. The first process can be expressed as double proper orthogonal decomposition (DPOD) or proper orthogonal decomposition and spectral representation method (POD-SRM), and the second process can be expressed as POD or SRM. On this basis, four SEP-H models of nonstationary stochastic turbulent wind fields are developed. In addition, the orthogonal random variables in the SEP-H models are presented as random orthogonal functions of elementary random variables. Meanwhile, the number theoretical method (NTM) is conveniently adopted to select representative points set of the elementary random variables. The POD-FFT (Fast Fourier transform) technique is introduced in frequency to give full play to the computational efficiency of the SEP-H models. Finally, taking a long-span bridge as the engineering background, the SEP-H models are compared with the dimension-reduction DPOD (DR-DPOD) model to verify the effectiveness and superiority of the proposed models.

Comparison of artificial intelligence models reconstructing missing wind signals in deep-cutting gorges

  • Zhen Wang;Jinsong Zhu;Ziyue Lu;Zhitian Zhang
    • Wind and Structures
    • /
    • 제38권1호
    • /
    • pp.75-91
    • /
    • 2024
  • Reliable wind signal reconstruction can be beneficial to the operational safety of long-span bridges. Non-Gaussian characteristics of wind signals make the reconstruction process challenging. In this paper, non-Gaussian wind signals are converted into a combined prediction of two kinds of features, actual wind speeds and wind angles of attack. First, two decomposition techniques, empirical mode decomposition (EMD) and variational mode decomposition (VMD), are introduced to decompose wind signals into intrinsic mode functions (IMFs) to reduce the randomness of wind signals. Their principles and applicability are also discussed. Then, four artificial intelligence (AI) algorithms are utilized for wind signal reconstruction by combining the particle swarm optimization (PSO) algorithm with back propagation neural network (BPNN), support vector regression (SVR), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), respectively. Measured wind signals from a bridge site in a deep-cutting gorge are taken as experimental subjects. The results showed that the reconstruction error of high-frequency components of EMD is too large. On the contrary, VMD fully extracts the multiscale rules of the signal, reduces the component complexity. The combination of VMD-PSO-Bi-LSTM is demonstrated to be the most effective among all hybrid models.

정전류·정전압 기능의 1kW급 하이브리드 PCS 설계 (Design of 1kW Hybrid CC/CV PCS)

  • 이재민
    • 디지털콘텐츠학회 논문지
    • /
    • 제14권4호
    • /
    • pp.529-536
    • /
    • 2013
  • 태양광 풍력 하이브리드(Hybrid) 발전 시스템에서는 발전의 주 인자인 태양의 일조량과 바람의 세기 등이 환경적 요인으로 적절하지 못할 경우 충방전 성능의 한계를 가지고 있는 에너지 저장장치인 배터리를 충전하는데 어려움이 발생한다. PCS(power conditioning system)는 태양광 풍력 발전 시스템 운용에 필수적인데 기존의 대부분의 PCS는 중대형 중심이어서 소형 발전에 적합하지 않아 효율이 높고 안정적인 동작을 하는 소형 발전용 PCS 개발이 절실히 요구된다. 본 논문에서는 이러한 문제들을 해결하면서 상용(한전)전력과의 계통연계 및 독립 운영이 가능하고 배터리의 장수명화와 안정화가 가능한 1kW급 하이브리드 CC/CV(constant current/constant voltage)기능을 갖는 PCS를 설계하고 시제품으로 구현하여 그 성능을 검증한다.

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

Improved Delayed DES 해석을 통한 돔 형상의 풍압 계수 및 풍압 스펙트럼 산정 (Wind Pressure Coefficients and Spectrum Estimation of Dome by Improved Delayed Detached Eddy Simulation)

  • 박범희;전두진;한상을
    • 한국공간구조학회논문집
    • /
    • 제19권4호
    • /
    • pp.95-102
    • /
    • 2019
  • In this study, the reliability of the analysis is evaluated by comparing the average wind pressure coefficient, RMS wind pressure coefficient and wind pressure spectrum with same condition of wind tunnel test which are calculated in the high-Reynolds number range of 1.2×106, 2.0×106 each for the typical curved shape dome structure. And it is examined by the reliability of analysis through Improved delayed detached Eddy Simulation(IDDES), which is one of the hybrid RANS/LES techniques that can analyze the realistic calculation range of high Reynolds number. As a result of the study, it was found that IDDES can be predicted very similar to the wind tunnel test. The distribution pattern of the wind pressure coefficient and wind pressure spectrum showed a similar compared with wind tunnel test.