• 제목/요약/키워드: Wind-hybrid

검색결과 345건 처리시간 0.028초

Photovoltaic Hybrid Systems Reliability and Availability

  • Zahran, Mohamed B.A.
    • Journal of Power Electronics
    • /
    • 제3권3호
    • /
    • pp.145-150
    • /
    • 2003
  • Reliability, availability, and cost have been the major concerns for photovoltaic hybrid systems since their beginning as primary sources for much critical applications like communication units and repeaters. This paper descnbes the performance of two hybrid systems, photovoltaic-battery, wind-turbine coupled with the public-grid (PVBWG) hybrid system and photovoltaic-battery, wind-turbine coupled With the diesel generator (PVBWD) hybrid system The systems are sized to power a typical 300W/48V de telecommunication load continuously throughout the year Such hybrid systems consist of subsystems, which in turn consist of components Failure of anyone of these components may cause failure of the entire system. The reliability and availability basics, and estimation procedure for the two proposals are introduced also in this paper. The PVBWG and PVBWD system configurations are shown with the relevant mean-time-between-faIlure (MTBF) and failure rate (${\lambda}$) of each component. The characteristics equations of the two systems are deduced as a function of operating hours and the percentage of sun and wind availabilities per day. The system probability failure as well as the reliability is estimated based on the fault tree analysis technique. The results show that, by using standard or normal components MTBF, the PVBWG is more reliable and the time of periodic maintenance period is more than one year especially in the rich sites of both sun and wind, but PVBWD competes else Also, in the first five years from the system installation, the system is quit reliable and may not require any maintenance. The results show also, as the sun and wind are available, as the system reliable and available.

Measurement of local wind and solar radiation for a hybrid power generation system design, Busan, Korea

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.799-806
    • /
    • 2013
  • As a first step to develop the hybrid power generation system, on this study, the time-variable resources of wind and solar radiation of Yeongdo, Busan, Korea had been measured during June and July 2013. And the quantity of generated wind power and solar photovoltaic had also been measured during the same period. It is found out that the wind mainly flew from southwest at the average speed of 2 m/s during 2 months. And it is clear that, because of the low wind velocity, the wind quality to generate the power seems not enough at this area. Meanwhile solar radiation was measured every daytime (6:00~19:00) and the peak solar radiation occurred around 12:00~14:00. And it is clear that the time-based variations of quantity of generated power were proportional to the variations of these resources, respectively. As a proposal, these 2 natural energies can be combined as resources of a hybrid system, because these 2 patterns are not overlapped so much on time base.

오프그리드용 풍력-연료전지 하이브리드 시스템 개발 (Development of WT-FC Hybrid System for Off-Grid)

  • 최종필;김광수;박내춘;김상훈;김병희;유능수
    • 신재생에너지
    • /
    • 제3권2호
    • /
    • pp.60-67
    • /
    • 2007
  • This paper describes the design and integration of the wind-fuel cell hybrid system. The hybrid system components included a wind turbine, an electrolyzer (for generation of H2), a PEMFC (Proton Exchange Membrane Fuel Cell), hydrogen storage tank and BOP (Balance of Plant) system. The energy input is entirely provided by a wind turbine. A DC-DC converter controls the power input to the electrolyzer, which produces hydrogen and oxygen form water. The hydrogen used the fuel for the PEMFC. Hydrogen may be produced and stored in high pressure tank by hydrogen gas booster system. Wind conditions are changing with time of day, season and year. So, wind power is a variable energy source. The main purpose with these WT-FC hybrid system is to store hydrogen by electrolysis of water when wind conditions are good and release the stored hydrog en to supply the fuelcell when wind is low.

  • PDF

극한환경에서의 소형풍력발전 실증운전 (Demonstration of 10kw Wind Turbine System at the King Sejong Station)

  • 김석우;경남호
    • 한국태양에너지학회 논문집
    • /
    • 제26권4호
    • /
    • pp.25-30
    • /
    • 2006
  • 10kW wind turbine has been successfully commissioned at the King Sejong station in April, 2006. The wind turbine installed is a part of the R&D program for developing a solid wind/diesel hybrid power control system for a remote area such as Antarctica. At the same time, the current research aims to develop an anti-icing and de-icing technologies for a small wind turbine rated under 50kW. Since its commissioning, the turbine has generated about 500kWh for 47days without any system faults. Although sufficient data have not been obtained yet, any trouble has not occurred in the wind/diesel hybrid system based on the current analysis. Concerning on the environmental impact by the wind turbine operation, the turbine is installed within the station boundary in order to meet the Madrid protocol. Therefore, wind turbine operation meets the international requirements for preservation of antarctic ecosystem.

퍼지 PI 제어기를 이용한 풍력/디젤 하이브리드 발전시스템의 품질제어 (Power Quality Control of Wind/Diesel Hybrid Power Systems Using Fuzzy PI Controller)

  • 양수형;고정민;부창진;강민제;김정욱;김호찬
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.1-10
    • /
    • 2012
  • This paper proposes a modeling and controller design approach for a wind-diesel hybrid system including dump load. Wind turbine depends on nature such as wind speed. It causes power fluctuations of wind turbine. Excessive power fluctuation at stand-alone power grid is even worse than large-scale power grid. The proposed control scheme for power quality is fuzzy PI controller. This controller has advantages of PI and fuzzy controller. The proposed model is carried out by using Matlab/Simulink simulation program. In the simulation study, the proposed controller is compared with a conventional PI controller. Simulation results show that the proposed controller is more effective against disturbances caused by wind speed and load variation than the PI controller, and thus it contributes to a better quality wind-diesel hybrid power system.

Hybrid wind-solar power deployment in India: Green Energy Open Access (GEOA) and Renewable Energy Certificates (REC)

  • Hardik K. Jani;Surendra Singh Kachhwaha;Garlapati Nagababu;Alok Das
    • Advances in Energy Research
    • /
    • 제8권4호
    • /
    • pp.243-252
    • /
    • 2022
  • The hybrid wind-solar energy concept has a big influence on the spread of wind and solar power projects in India since it combines the benefits of both industries while also providing extra benefits such as resource sharing such as land, infrastructure, and power evacuation systems. Furthermore, while the hybrid policy may reduce certain barriers to the installation of wind and solar energy in India, there are still some issues that must be resolved rapidly in order to ensure a sustainable installation. According to the study's findings, the installation of wind and solar power plants is significantly influenced by energy policy. The wind-solar hybrid energy strategy will also be crucial in the near future for growing the usage of renewable energy sources. Aside from that, the establishment of Green Energy Open Access (GEOA) and the restart of the trading of Renewable Energy Certificates (REC) would promote the quick deployment of standalone and hybrid renewable power projects throughout the nation, enabling it to reach 500 GW of installed non-fossil energy capacity by 2030.

새만금 부근 섬 지역에서 풍력-디젤 복합 전원 시스템의 경제 및 환경적 타당성에 관한 연구 (Economic and Environmental Feasibility on the Wind-Diesel Hybrid Power System in an Island near Seamangeum Area)

  • 서현수;장세명;김은일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.277-280
    • /
    • 2006
  • This paper deals with the possibility on the hybrid power system concerning wind energy at a really existing island, Sunyoo-do in the west sea near Seamangeum. In the present stage, Diesel system produces all the electrical power of the Island. However, in the new proposed system of Diesel and wind energy, an optimized guideline for drive from the economic analysis on this hybrid system is given by a mathematical and statistical modelling with a share software HOMER (hybrid optimization model for electric renewables). After a series of analysis it has been shown that the hybrid system can reduce the total expenses as well as air pollution.

  • PDF

복합형 수직축 풍력발전기의 유동소음특성에 관한 수치적 고찰 (Numerical Investigation on the Flow Noise Characteristics of the Hybrid Vertical-axis Wind Turbine)

  • 김상현;정철웅
    • 한국음향학회지
    • /
    • 제33권6호
    • /
    • pp.351-357
    • /
    • 2014
  • 본 논문에서는 복합형 수직축 풍력발전기의 유동소음특성에 관한 연구를 수행하였다. 복합형 수직축 풍력발전기는 Savonius형과 Darrieus형을 동시에 사용하여 두 풍력발전기의 장점을 극대화하여 단점을 상쇄시키는 새로운 개념의 수직축 풍력발전기이다. 본 연구에서는 이러한 특성을 갖는 복합형 수직축 풍력발전기에 대하여, 복합 전산공력음향학 기법을 이용하여 풍력발전기에서 발생하는 유동소음을 예측하였다. 먼저, 전산유체역학 기법을 이용하여 터빈 주위의 비정상유동장을 예측하였다. 다음으로, 예측한 비정상유동장에 음향상사법을 적용하여 터빈으로부터 방사하는 유동소음을 예측하였다. 해석결과를 바탕으로 복합형 수직축 풍력발전기의 유동소음특성을 분석하였고, 이를 Savonius형 및 Darrieus형의 유동소음특성과 비교하였다.

Fuzzy hybrid control of a wind-excited tall building

  • Kang, Joo-Won;Kim, Hyun-Su
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.381-399
    • /
    • 2010
  • A fuzzy hybrid control technique using a semi-active tuned mass damper (STMD) has been proposed in this study for mitigation of wind induced motion of a tall building. For numerical simulation, a third generation benchmark is employed for a wind-excited 76-story building. A magnetorheological (MR) damper is used to compose an STMD. The proposed control technique employs a hierarchical structure consisting of two lower-level semi-active controllers (sub-controllers) and a higher-level fuzzy hybrid controller. Skyhook and groundhook control algorithms are used as sub-controllers. When a wind load is applied to the benchmark building, each sub-controller provides different control commands for the STMD. These control commands are appropriately combined by the fuzzy hybrid controller during realtime control. Results from numerical simulations demonstrate that the proposed fuzzy hybrid control technique can effectively reduce the STMD motion as well as building responses compared to the conventional hybrid controller. In addition, it is shown that the control performance of the STMD is superior to that of the sample TMD and comparable to an active TMD, but with a significant reduction in power consumption.

Development of Flapping Type Wind Turbine System for 5 kW Class Hybrid Power Generation System

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.167-174
    • /
    • 2016
  • Even though the differential drag type machines of the vertical wind turbines are a bit less efficient than the lift type machines such as Darrieus type machines, they have an advantage of low starting torque. The flapping blade type wind turbine is a specific type of the differential drag machines, and it has no need for orientation as well as quite low starting torque. This work is to develop an innovative 5kW class flapping type vertical wind turbine system which will be applicable to a hybrid power generation system driven by the diesel engine and the wind turbine. The parametric study was carried out to decide an optimum aerodynamic configuration of the wind turbine blade. In order to evaluate the designed blade, the subscale wind tunnel test and the performance test were carried out, and their test results were compared with the analysis results.