• Title/Summary/Keyword: Wind-hybrid

Search Result 348, Processing Time 0.038 seconds

The Characteristic of the Hub Construction Wind Power Industry of the West-South Seashore with Favorable Products (서남해안 풍력산업 허브 구축사업의 유망 상품의 특성)

  • Cha, In Su;Kim, Taehyung;Lee, Ki Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.179.1-179.1
    • /
    • 2010
  • This paper has represented about the wind power industry of the west-south seashore with leading industry development for Honam Economic Region. These projects have composed of wind power industry of the west-south seashore, offshore wind turbine(2MW, 3MW) and onshore wind turbine(3kW, 5kW, 10kW), 11 projects, during 3 years- with honam leading industry development for economic region. The contents of these project are 3 favorable products and 3 business support projects. The favorable products are the MW offshore wind system with Outer-rotor type PMSG, the 3MWoffshore wind system with adaptation type of west-south sea, the hybrid generator system with wind turbine technology basis.

  • PDF

Determination of the HESS Capacity for Mitigation of Fluctuation of Wind Farm Output under Consideration of Disconnecting Wind Farm (풍력발전단지 탈락 시를 고려한 단지 출력 변동 저감을 위한 HESS의 용량 산정)

  • Kim, SeongHyun;Ko, JiHan;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.388-389
    • /
    • 2013
  • This paper presents the method for the fluctuation smoothing control by using relaxation time variable control of battery. When the output power of wind farm is changed suddenly, it is necessary to control the output power of wind farm. The smoothing relaxation time is changed within limits of battery output power. Using the hybrid energy storage system (HESS) combined with battery energy storage system and electric double layer capacitor, it is possible to control the output power of wind farm. The capacity of battery is determined by considering the case of the disconnecting wind farm from the grid. To verify the proposed method, simulations are carried out by using PSCAD/EMTDC with actual data of wind farm in the Jeju Island.

  • PDF

The Strain Evaluation of the Notch tip Area for the CFRP/GFRP Hybrid Laminate Plate using the SENT Specimen (SENT시험편을 이용한 CFRP/GFRP 하이브리드 적층재의 노치선단부 변형률 평가)

  • Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.15-21
    • /
    • 2014
  • The aim of this work is conduct the study on light weight and structural performance improvement of the composite wind power blade. GFRP (Glass Fiber Reinforced Plastic) pre-empted by CFRP(Carbon Fiber Reinforced Plastic), the major material of wind power blade, was identified the superiority of mechanical performance through the tensile and fatigue test. SENT(Single Edge Notched Tension) specimen fracture test was conducted on the specimen that laminated together 2 ply CFRP with 4 ply GFRP through DIC(Digital Image Correlation) analysis. The SENT specimen thickness and $a_0/W$ ratio is 1.45 mm and 0.2, respectively. The fracture test accomplished with displacement control with 0.1 mm/min at the room temperature. The experimental apparatus used for the fracture test consisted of a 50kN universal dynamic tester and CCD camera connected to a personal computer (PC), which was used to record images of the specimen surface. Following data acquisition, the images and load-displacements were transferred to the PC, on which the DIC software was implement. The experiment and DIC analysis results show that CFRP/GFRP laminated composite exhibits improvement of the strength, compared with that of the existing blade material. This study shows the result that the strength of CFRP rotor blade of wind turbine satisfies through the experimental and DIC method.

A Study on the Auxiliary Power Generator for Urban Photovoltaic/Wind Hybrid System (도시형 태양광/풍력 복합발전의 보조 전력발생장치 개발에 대한 연구)

  • Park, Se-Jun;Yun, Jeong-Phil;Yoon, Pil-Hyun;Ji, Woon-Seok;Lim, Jung-Yeol;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.187-191
    • /
    • 2004
  • Photovoltaic and wind power generation have an advantage of unpolluted and unlimited amount of energy resource. Since there is such an advantage in these energies, But photovoltaic system and wind system cannot always generate stable output with ever-changing weather condition. In this paper, the auxiliary power generator for hybrid system(photovoltaic 500[W], wind power generation 400[W]) was suggested. the auxiliary power generator that uses elastic energy of spiral spring to photovoltaic system was also added for present system. when output of photovoltaic system gets lower than 24[V], power was continuously supplied to load through the inverter by charging energy of spiral spring operates in DC generator.

  • PDF

A Study on Utility Inter-Active for Urban Photovoltaic/Wind Hybrid Generation System (도시보급용 소형 태양광/풍력 복합발전의 계통연계운전에 관한 연구)

  • Ji Woon-Seok;Yoon Pil-Hyun;Cho Kyeng-Jai;Lee Jeong-il;Lim Jung-Yeol;Cha In-Su
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1504-1506
    • /
    • 2004
  • Photovoltaic and wind power generation have an advantage of unpolluted and unlimited amount of energy resource. Since there is such an advantage in these energies, But photovoltaic system and wind system cannot always generate stable output with ever-changing weather condition. In this paper, the auxiliary power generator for hybrid system(photovoltaic 500[W], wind power generation 400[W]) was suggested. the auxiliary power generator that uses elastic energy of spiral spring to photovoltaic system was also added for present system. when output of photovoltaic system gets lower than 24[V], power was continuously supplied to load through the inverter by charging energy of spiral spring operates in DC generator.

  • PDF

A Hybrid Fiber-Optic Sensor System for Multi-Stress Condition Monitoring of Wind Turbines (하이브리드 광섬유 센서 시스템을 이용한 풍력발전기의 다중물리량 상태감시)

  • Kim, Dae-Gil;Kim, Hyunjin;Song, Minho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.76-82
    • /
    • 2015
  • A hybrid fiber-optic sensor system which combines fiber Bragg grating sensors and a Michelson interferometer has been constructed and evaluated for condition monitoring of large scale wind turbines. In order to measure multiple stresses applied to wind turbines such as strain, temperature and vibration, the system uses single broadband light source. It addresses both types of sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light, of which coherence length is about 3.28mm, for the Michelson interferometer demodulation. Experimental results demonstrated that the proposed fiber-optic sensor system was capable of measuring strain and temperature with measurement accuracy of 1pm. Also 500~2000Hz vibration signals were successfully analyzed by applying FFT signal processing to interference signals.

Simplified Wind Turbine Modeling and Calculation of PCC Voltage Variation according to Grid Connection Conditions (간략화된 풍력발전기 모델링과 계통연계 조건에 따른 PCC 전압 변동량 계산)

  • Im, Jl-Hoon;Song, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2402-2409
    • /
    • 2009
  • This paper proposed a simple and helpful analysis model of voltage variation in order to predict the voltage variation at PCC (Point of Common Coupling), when a wind turbine is connected in an isolated grid. The PCC voltage flucuates when the wind turbine outputs active power to an isolated grid. This voltage variation is proportional to the product of the line impedance from the ideal generator to the PCC and the wind turbine output current. And It is different according as where wind turbine is connected. To solve the problem of voltage variation, this paper proposed the reactive power control. To verify the proposed analysis model, this paper utilized PSCAD/EMTDC Simulation and the field measurement data of the voltage variation during the wind power generation.

Improving Forecast Accuracy of Wind Speed Using Wavelet Transform and Neural Networks

  • Ramesh Babu, N.;Arulmozhivarman, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.559-564
    • /
    • 2013
  • In this paper a new hybrid forecast method composed of wavelet transform and neural network is proposed to forecast the wind speed more accurately. In the field of wind energy research, accurate forecast of wind speed is a challenging task. This will influence the power system scheduling and the dynamic control of wind turbine. The wind data used here is measured at 15 minute time intervals. The performance is evaluated based on the metrics, namely, mean square error, mean absolute error, sum squared error of the proposed model and compared with the back propagation model. Simulation studies are carried out and it is reported that the proposed model outperforms the compared model based on the metrics used and conclusions were drawn appropriately.

Wind field generation for performance-based structural design of transmission lines in a mountainous area

  • Lou, Wenjuan;Bai, Hang;Huang, Mingfeng;Duan, Zhiyong;Bian, Rong
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.165-183
    • /
    • 2020
  • The first step of performance-based design for transmission lines is the determination of wind fields as well as wind loads, which are largely depending on local wind climate and the surrounding terrain. Wind fields in a mountainous area are very different with that in a flat terrain. This paper firstly investigated both mean and fluctuating wind characteristics of a typical mountainous wind field by wind tunnel tests and computational fluid dynamics (CFD). The speedup effects of mean wind and specific turbulence properties, i.e., turbulence intensity, power spectral density (PSD) and coherence function, are highlighted. Then a hybrid simulation framework for generating three dimensional (3D) wind velocity field in the mountainous area was proposed by combining the CFD and proper orthogonal decomposition (POD) method given the properties of the target turbulence field. Finally, a practical 220 kV transmission line was employed to demonstrate the effectiveness of the proposed wind field generation framework and its role in the performance-based design. It was found that the terrain-induce turbulence effects dominate the performance-based structural design of transmission lines running through the mountainous area.