• Title/Summary/Keyword: Wind-driven Current

Search Result 92, Processing Time 0.024 seconds

Influences of the Sea Surface Wind on Current and Thermal Structures in the Southwestern Part of the East Sea of Korea (동해 남서해역의 해류 및 열구조에 미치는 해상풍의 영향)

  • NA Jung-Yul;PAENG Dong-Guk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.1
    • /
    • pp.15-28
    • /
    • 1992
  • Temporal variations of the path of the East Korea Warm Current(EKWC) which flows northward along the east coast of Korea were analysed to investigate whether the EKWC directly influences the existence of the so-called Warm Core in the Ulreung basin. From the 13 years(1975-1987) data of the Fisheries Research and Development Agency(FRDA), the $10^{\circ}C$ isotherm at the 100m depth and the depth of $2^{\circ}C$ isotherm and the temperature field at the 200m depth were used for identification of the path and the central position of the Warm Core. Sea surface winds computed from the surface pressure charts gave the monthly-averaged wind stress curl over the East Sea which was used for determination of the Sverdrup transport. And the mass transport stream functions were computed by use of the Sverdrup balance. The variations of the path show that the EKWC does not always have a fixed path and fluctuates with time. And the existence of the Warm Core is independent upon the presence of the EKWC even when the EKWC doesn't flow northward along the east coast of Korea. In view of the mass transport stream functions, the influences of the sea surface winds on the branching of the Tsushima Warm Currents and the presence of the EKWC were investigated. The presence of the EKWC may be hindered by the southward flow driven by the sea surface winds when the Tsushima currents are rather weak. A very weak correlation exists between the north-south component of the Sverdrup transport and the position of the Warm Core. However, a small but significant part of the southward transport across the latitudinal line of $38^{\circ}N$ indicates that cold water from the northern part of the East Sea may be driven and be forced to flow beneath the permanent thermocline in such a way that the thermal structure of the Warm Core and its position might be changed.

  • PDF

Eddy Formation Near the Izu-Ogasawara Ridge and its Link with Seasonal Adjustment of the Subtropical Gyre in the Pacific

  • Ihara, Chie;Kagimoto, Takashi;Masumoto, Yukio;Yamagata, Toshio
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.134-143
    • /
    • 2002
  • Using OGCM results, we have shown that the ring-like cold baroclinic eddies associated with cyclonic circulation are shed from late summer to early fall near the Izu-Ogasawara Ridge from the Kuroshio Extension owing to baroclinic instability. On the other hand, warm baroclinic eddies are generated by the intensified western boundary current associated with the warm anomaly accumulated near the Ridge in winter, which corresponds to the basin-wide barotropic intensification of the wind-driven gyre in winter. We are successful in reproducing the behavior of those meso-scale eddies using a simple two-layer primitive equation model driven by seasonal winds associated with the positive curl. Those eddies carry barotropic seasonal signals originated in the Pacific Basin quite slowly west of the ridge; this process introduces a phase lag in the timing of the seasonal maximum transport in the Philippine Basin west of the ridge. It Is demonstrated that the existence of bottom topography, baroclinicity, and nonlinearity due to advection are three necessary elements for the generation of these eddies south of Japan.

Comparative Evaluation of Determination Methods of Vertical Eddy Viscosity for Computation of Wind-Induced Flows (풍성류 계산을 위한 연직 와점성계수 산정방법의 비교평가)

  • 정태성;이길성;오병철
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.205-215
    • /
    • 1994
  • A 3-dimensional numerical model of wind-induced flows has been established. and comparative evaluation of determination methods of vertical eddy viscosity has been performed. The model uses turbulence models to calculate vertical eddy viscosity. The examined methods arp 0-equation model of functional form, 1-equation model of turbulence kinetic energy, and two 2-equation models ($textsc{k}$-$\varepsilon$ and $textsc{k}$-ι models). The evaluation includes the verification tests against experimental data for wind-driven current On a closed one-dimensional channel and a recirculating one-dimensional channel. Comparative study of turbulence models has shown that the proper distribution of turbulence scale is parabolic and the eddy viscosity is depending strongly on mixing depth due to wind.

  • PDF

Study on Tidal Current Simulation and its Application to Speed Trial around Straits of Korea (대한해협에서의 선박의 속력 시운전시 조류 예측에 관한 연구)

  • Lee, Hee-Su;Choi, Dai-Hyun;Park, Jong-Chun;Jeong, Se-Min;Kim, Young-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.23-29
    • /
    • 2010
  • Korean shipbuilding companies have sometimes carried out sea trials to measure a vessel's speed performance around the western channel of the Straits of Korea, where the flow fields are very complicated because of the effect of various flows such as sea, tidal, geostrophic, and wind-driven currents. Because these flows seem to present significant interference to a ship, the numerical reproduction of the flow-fields in the vicinity of the target sites could provide a better understanding of the sea environments while performing sea trials. In this study, we used the MEC ocean model to simulate the tidal currents around Tsushima Island and compared the simulated tidal amplitudes and currents with the measurements of Teague et al. (2001). The tidal amplitudes of the present simulation results agreed well with the observations. Based on the numerical simulation, the optimal direction and proper sites for a speed trial are described.

Oil Spill Behavior forecasting Model in South-eastern Coastal Area Of Korea (한국 동남해역에서의 유출유 확산예측모델)

  • Ryu Cheong Ro;Kim Jong Kyu;Seol Dong Guan;Kang Dong Uk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.52-59
    • /
    • 1998
  • Many concerns are placed on preservation of coastal environment from the spilled oil contaminant in the coastal area. And the use of computer simulation model to combat with oil spill has come to play mote important role in forecasting the oil spill trajectory so as to protect coastal area and minimize the damage from oil contaminants. The main concerns of this study is how the movements of spilled oil are affected by currents including tidal, oceanic, and wind-driven currents. Especially, in the present paper, the oil spill trajectory can be predicted by a real-time system that allows prediction of circulation and wind field. The harmonic methods are adopted to simulate the tidal currents as well as it can be possible to achieve the wind-field data and oceanic current data from the established database. System performance is illustrated by the simulation of oil spill in the south-eastern coastal area of Korea. Simulation results are compared with the observed one.

  • PDF

Effects of Vertical Eddy Viscosity on the Velocity Profile - Cases of Given Vertical Eddy viscosity - (鉛直 過粘性係數가 流速의 鉛直構造에 미치는 影響 - 鉛直 過粘性係數가 주어진 境遇 -)

  • 이종찬;최병호
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.119-131
    • /
    • 1994
  • Vertical structures of wind-driven and tidal currents in a rectangular shaped uniform-depth basin of homogeneous water have been investigated using a mode-splitted, multi-level grid-box, hydrodynamic numerical model. The model was verified using analytical solutions for various vertical eddy viscosity profiles such as: a constant eddy viscosity, a linearly decreasing or increasing variation with depth, a quadratic variation with depth and an exponential variation with depth. Particular attention has been paid on the effects of "near-surface wall layer" on vertical shear of velocity. In numerical calculations, the whole water depth was divided into 13 levels with an unequal grid spacing. the model satisfactorily reproduces the velocity profile, but in case the eddy viscosity decreases rapidly with depth as in quadratical or exponential variation with depth, the vertical gradient of velocity near the bottom became very steep, and analytical solutions and numerical results showed some discrepancy. The vertical structures of horizontal velocity vary with both the depth-averaged value of eddy viscosity and its profiles. the velocity near the sea surface and near the bottom responded sensitively to the eddy viscosity of wall layer. For wind-driven current, the strong velocity shear was generated near the sea surface as eddy viscosity near the surface became small. For tidal current, the velocity above the sea bottom layer was almost constant regardless of the profiles of vertical eddy viscosity, but velocity in the sea bottom layer showed strong shear as eddy viscosity became small.

  • PDF

Some Dynamical Issues about the Tsushima Warm Current based on Bibliographical Review (서지학적으로 본 대마난류의 몇 가지 역학적 쟁점들)

  • SEUNG, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.439-447
    • /
    • 2019
  • Some dynamical issues about the Tsushima Warm Current (TWC) are reviewed and checked for the remaining unresolved problems, focusing on the formation of the TWC, seasonal variation of its volume transport and its branching in the East Sea. The TWC is a part of the North Pacific (NP) subtropical gyre driven by the NP global wind system. However, the quantitative amount of volume transport is sensitive to friction, basin geometry, barrier effect and so on. Among many causes suggested by many scientists, subpolar winds are found to be most closely related with the seasonal variation of TWC volume transport. However, more studies relating the latter not only to the subpolar winds but also to those including the subtropical winds seem to be required. The branching of the TWC has been known to be due to the western intensification for the East Korean Warm Current (EKWC) and to the bottom trapping for the Nearshore Branch. Since the former hypothesis is problematic in explaining the seasonal variation of the EKWC, other candidate mechanisms may need to be considered.

Topographic Variability during Typhoon Events in Udo Rhodoliths Beach, Jeju Island, South Korea (제주 우도 홍조단괴해빈의 태풍 시기 지형변화)

  • Yoon, Woo-Seok;Yoon, Seok-Hoon;Moon, Jae-Hong;Hong, Ji-Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.307-320
    • /
    • 2021
  • Udo Rhodolith Beach is a small-scale, mixed sand-and-gravel beach embayed on the N-S trending rocky coast of Udo, Jeju Island, South Korea. This study analyzes the short-term topographic changes of the beach during the extreme storm conditions of four typhoons from 2016 to 2020: Chaba (2016), Soulik (2018), Lingling (2019), and Maysak (2020). The analysis uses the topographic data of terrestrial LiDAR scanning and drone photogrammetry, aided by weather and oceanographic datasets of wind, wave, current and tide. The analysis suggests two contrasting features of alongshore topographic change depending on the typhoon pathway, although the intensity and duration of the storm conditions differed in each case. During the Soulik and Lingling events, which moved northward following the western sea of the Jeju Island, the northern part of the beach accreted while the southern part eroded. In contrast, the Chaba and Maysak events passed over the eastern sea of Jeju Island. The central part of the beach was then significantly eroded while sediments accumulated mainly at the northern and southern ends of the beach. Based on the wave and current measurements in the nearshore zone and computer simulations of the wave field, it was inferred that the observed topographic change of the beach after the storm events is related to the directions of the wind-driven current and wave propagation in the nearshore zone. The dominant direction of water movement was southeastward and northeastward when the typhoon pathway lay to the east or west of Jeju Island, respectively. As these enhanced waves and currents approached obliquely to the N-S trending coastline, the beach sediments were reworked and transported southward or northward mainly by longshore currents, which likely acts as a major control mechanism regarding alongshore topographic change with respect to Udo Rhodolith Beach. In contrast to the topographic change, the subaerial volume of the beach overall increased after all storms except for Maysak. The volume increase was attributed to the enhanced transport of onshore sediment under the combined effect of storm-induced long periodic waves and a strong residual component of the near-bottom current. In the Maysak event, the raised sea level during the spring tide probably enhanced the backshore erosion by storm waves, eventually causing sediment loss to the inland area.

Modeling Paddlewheel-Driven Circulation in a Culture Pond (축제식 양식장에서 수차에 의한 순환 모델링)

  • KANG Yun Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.643-651
    • /
    • 2001
  • Paddlewheel-driven circulation in a culture pond has been simulated based on the depth integrated 2 dimensional hydrodynamic model. Acceleration by paddlewheel is expressed as shaft force divided by water mass discharged by paddlewheel blades. The model has been calibrated and applied to culture ponds as following steps:- i) The model predicted velocities at every 10 m along longitudinal direction from the paddlewheel. The model was calibrated comparing the results with the measured values at mass correction factor $\alpha$ and dimensionless eddy viscosity constant $\gamma$, respectively, in a range $15\~20$ and 6. ii) Wind shear stress was simulated under conditions of direction $0^{\circ}C,\;90^{\circ}C\;and\;180^{\circ}C$ and speed 0.0, 2.5, 5.0 and 7.5 m/s. Change rate of current speed was <$1\%$ at wind in parallel or opposite direction to the paddlewheel-driven jet flow, while $4\%$ at orthogonal angle. iii) The model was then applied to 2 culture ponds located at the Western coast of Korea. The measured and predicted currents for the ponds were compared using the regression analysis. Analysis of flow direction and speed showed correlation coefficients 0.8928 and 0.6782 in pond A, 0.8539 and 0.7071 in pond B, respectively. Hence, the model is concluded to accurately predict circulation driven by paddlewheel such that it can be a useful tool to provide pond management strategy relating to paddlewheel operation and water quality.

  • PDF

The Smart Monitoring System for implementing All-in-One 9-Nautical mile LED lantern (일체형 9해리 LED 등명기 구현을 위한 스마트 모니터링 시스템)

  • Lim, Gyu-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1349-1354
    • /
    • 2021
  • An All-in-one LED lantern is a light device to determine the fairway of ships in operation. The current all-in-one LED lantern powered by solar energy is challenged by insufficient power capacity due to limited sun hours. This article presents an all-in-one 9-Nautical mile LED lantern driven by solar and wind power that is abundant maritime renewable energy. Furthermore, the remote smart monitoring system is developed. A smart control system capable of remote control of the lantern was implemented by using the LED lantern device and monitoring system as IoT. This technology that realtime condition monitoring and remote control are developed for safe ship navigation. We expect that maintaining the accuracy and consistency of LED lanterns prevents marine accidents and reduces social costs.