• Title/Summary/Keyword: Wind waves

Search Result 473, Processing Time 0.032 seconds

Growth of Wind Waves with Fetch in the Sea of Japan under Winter Monsoon Investigated using Data from Satellite Altimeters and Scatterometer

  • Ebuchi, Naoto
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.31-36
    • /
    • 1998
  • By using wind vectors observed by NSCAT and significant wave heights observed by TOPEX/POSEIDON and ERS-2 altimeters, one-dimensional fetch growth of wind waves Is investigated under conditions of strong wind and high waves of the East Asian winter monsoon. The evolution of fetch-limited wind waves can be observed by the altimeters along the ground tracks. The fetch is estimated by using vector wind field observed by NSCAT. The derived growth characteristics of wind waves are compared with empirical relationships between the non-dimensional fetch and significant wave height proposed by previous studies. Good agreement with the empirical fetch graph formula normalized by the friction velocity is discemible, while the formulas normalized by the wind speed at a height of 10 m tend to underestimate the wave height under such severe conditions of high wind and very long fetch.

  • PDF

Research on Wind Waves Characteristics by Comparison of Regional Wind Wave Prediction System and Ocean Buoy Data (지역 파랑 예측시스템과 해양기상 부이의 파랑 특성 비교 연구)

  • You, Sung-Hyup;Park, Jong-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.7-15
    • /
    • 2010
  • Analyses of wind wave characteristics near the Korean marginal seas were performed in 2008 and 2009 by comparisons of an operational wind wave forecast model and ocean buoy data. In order to evaluate the model performance, its results were compared with the observed data from an ocean buoy. The model used in this study was very good at predicting the characteristics of wind waves near the Korean Peninsula, with correlation coefficients between the model and observations of over 0.8. The averaged Root Mean Square Error (RMSE) for 48 hrs of forecasting between the modeled and observed waves and storm surges/tide were 0.540 m and 0.609 m in 2008 and 2009, respectively. In the spatial and seasonal analysis of wind waves, long waves were found in July and September at the southern coast of Korea in 2008, while in 2009 long waves were found in the winter season at the eastern coast of Korea. Simulated significant wave heights showed evident variations caused by Typhoons in the summer season. When Typhoons Kalmaegi and Morakot in 2008 and 2009 approached to Korean Peninsula, the accuracy of the model predictions was good compared to the annual mean value.

A Study on the Numerical Calculation for Wind Waves During the Passage of Typhoon 'Memi' (태풍 '매미' 내습시 파랑선정에 관한 기초적 연구)

  • LEE GYONG-SEON;KIM HONG-JIN;YOON HAN-SAM;RYU CHEONG-RO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.229-234
    • /
    • 2004
  • A Typhoon wave is generated by wind fields during the Passage of Typhoon. Transporting wind field makes wind wave and swell in the open sea, and then, those wave components are transported in the shallow water. Typhoon waves in the shallow water is generated by Typhoon wind field and incident wave. Bisides, Incident waves to the shallow water are deformated by topographic conditions. This paper estimated the analysis of the Typhoon waves by wind fields and incident waves according to wave action balance equation model. As the result of wave numerical experiment, wave field during the passage of Typhoon 'Memi' in the shallow water is strongly effect by wind fields. Wave action balance equaion can be partially used for Typhoon wave simulations.

  • PDF

Marine Meteorological Characteristics in 2006-2007 year near the Korean Peninsular : Wind Waves (2006-2007년 한반도 인근 해양기상 특성 : 파랑)

  • You, Sung Hyup
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.93-106
    • /
    • 2009
  • Analysis has been made on the wind wave characteristics in terms of significant wave height ($H_s$) near the Korean marginal seas in the 2006 - 2007 year using the third generation wave model, WAVEWATCH - III model. In order to evaluate its performance, its results were compared with the observed data using KMA ocean buoy. The two year average RMSE between modeled and observed Hs shows reasonably small value of about 0.37 m. The accuracy of predicted values in the year 2007 is increased mainly due to finer model grid size and better accurate wind field. The model used in this study predicts very well the characteristics ($H_s$) of wind waves near the Korean Peninsular. Simulated monthly wind waves show the evident seasonal variations due to Typhoons in summer season. When Typhoons approach to Korean Peninsular, the accuracy of wind waves predictions is lower than that of annual mean value.

Numerical Study on Unified Seakeeping and Maneuvering of a Russian Trawler in Wind and Waves

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Yoon, Hyeon Kyu;Kim, Young Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2021
  • The maneuvering performance of a ship on the actual sea is very different from that in calm water due to wave-induced motion. Enhancement of a ship's maneuverability in waves at the design stage is an important way to ensure that the ship navigates safely. This paper focuses on the maneuvering prediction of a Russian trawler in wind and irregular waves. First, a unified seakeeping and maneuvering analysis of a Russian trawler is proposed. The hydrodynamic forces acting on the hull in calm water were estimated using empirical formulas based on a database containing information on several fishing vessels. A simulation of the standard maneuvering of the Russian trawler was conducted in calm water, which was checked using the International Maritime Organization (IMO) standards for ship maneuvering. Second, a unified model of seakeeping and maneuvering that considers the effect of wind and waves is proposed. The wave forces were estimated by a three-dimensional (3D) panel program (ANSYS-AQWA) and used as a database when simulating the ship maneuvering in wind and irregular waves. The wind forces and moments acting on the Russian trawler are estimated using empirical formulas based on a database of wind-tunnel test results. Third, standard maneuvering of a Russian trawler was conducted in various directions under wind and irregular wave conditions. Finally, the influence of wind and wave directions on the drifting distance and drifting angle of the ship as it turns in a circle was found. North wind has a dominant influence on the turning trajectory of the trawler.

Comparison of simulated platform dynamics in steady/dynamic winds and irregular waves for OC4 semi-submersible 5MW wind-turbine against DeepCwind model-test results

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-21
    • /
    • 2016
  • The global performance of the 5 MW OC4 semisubmersible floating wind turbine in random waves with or without steady/dynamic winds is numerically simulated by using the turbine-floater-mooring fully coupled dynamic analysis program FAST-CHARM3D in time domain. The numerical simulations are based on the complete second-order diffraction/radiation potential formulations along with nonlinear viscous-drag force estimations at the body's instantaneous position. The sensitivity of hull motions and mooring dynamics with varying wave-kinematics extrapolation methods above MWL(mean-water level) and column drag coefficients is investigated. The effects of steady and dynamic winds are also illustrated. When dynamic wind is added to the irregular waves, it additionally introduces low-frequency wind loading and aerodynamic damping. The numerically simulated results for the 5 MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model-test results by Technip/NREL/UMaine. Those numerical-simulation results have good correlation with experimental results for all the cases considered.

Kelvin Ship Wake Modification due to Wind Waves

  • Lee, Kwi-Joo;Shugan, I.V.;An, Jung-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.1-6
    • /
    • 2008
  • A kinematics model of a ship wake in the presence of surface waves generated by wind is presented. It was found that a stationary wave structure behind a ship covered a wedge region with the angle at the top of the wake and that only divergent waves were present in a ship wake instead of both the longitudinal and cross-waves, which are known as the Kelvin model. Ship motion at some angle to wind waves can cause an essential asymmetry of the wake, compressing its windward half.

Numerical study of wind profiles over simplified water waves

  • Cao, Shuyang;Zhang, Enzhen;Sun, Liming;Cao, Jinxin
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.289-309
    • /
    • 2015
  • Vertical profiles of mean and fluctuating wind velocities over water waves were studied, by performing Large-Eddy Simulations (LES) on a fully developed turbulent boundary layer over simplified water waves. The water waves were simplified to two-dimensional, periodic and non-evolving. Different wave steepness defined by $a/{\lambda}$ (a : wave amplitude; ${\lambda}$ : wavelength) and wave age defined by $c/U_b$ (c: phase velocity of the wave; $U_b$ : bulk velocity of the air) were considered, in order to elaborate the characteristics of mean and fluctuating wind profiles. Results shows that, compared to a static wave, a moving wave plays a lesser aerodynamic role as roughness as it moves downstream slower or a little faster than air, and plays more aerodynamic roles when it moves downstream much faster than air or moves in the opposite direction to air. The changes of gradient height, power law index, roughness length and friction velocity with wave age and wave amplitude are presented, which shed light on the wind characteristics over real sea surfaces for wind engineering applications.

Comparison of Wave Model with KMA Buoy Observation Results in the 2002 - 2005 year (기상청 부이 관측결과를 이용한 파랑모델 비교 : 2002년 - 2005년)

  • You, Sung Hyup;Seo, Jang-Won;Chang, You-Soon;Park, Sangwook;Youn, Yong-Hoon
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.279-301
    • /
    • 2006
  • This study analyzed the characteristics of the wind waves near the Korean marginal seas in the 2002 - 2005 year using the third generation wave model, WAVEWATCH - III model. In order to investigate the model performance, model results were compared with the marine meteorological observation results. The 4 years average correlation coefficient between model and observation shows very high value of about 0.77. The model of this study represents very well the characteristics of wind waves near the Korean marginal seas. Simulated monthly sea surface winds and wind waves show the evident spatial variations and this model also simulates very well seasonal characteristics of wind waves in this region.

Fluctuating wind and wave simulations and its application in structural analysis of a semi-submersible offshore platform

  • Ma, Jin;Zhou, Dai;Han, Zhaolong;Zhang, Kai;Bao, Yan;Dong, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.624-637
    • /
    • 2019
  • A semi-submersible offshore platform always operates under complex weather conditions, especially wind and waves. It is vital to analyze the structural dynamic responses of the platform in short-term sea states under the combined wind and wave loads, which touches upon three following work. Firstly, a derived relationship between wind and waves reveals a correlation of wind velocity and significant wave height. Then, an Improved Mixture Simulation (IMS) method is proposed to simulate the time series of wind/waves accurately and efficiently. Thus, a wind-wave scatter diagram is expanded from the traditional wave scatter diagram. Finally, the time series of wind/wave pressures on the platform in the short-term sea states are converted by Workbench-AQWA. The numerical results demonstrate that the proposed numerical methods are validated to be applicable for wind and wave simulations in structural analyses. The structural dynamic responses of the platform members increase with the wind and wave strength. In the up-wind and wave state, the stresses on the deck, the connections between deck and columns, and the connection between columns and pontoons are relatively larger under the vertical bending moment. These numerical methods and results are wished to provide some references for structural design and health monitoring of several offshore platforms.