• 제목/요약/키워드: Wind turbine controller

검색결과 126건 처리시간 0.024초

풍력터빈시스템의 적응백스테핑 속도제어기 설계 (Design of an Adaptive Backstepping Speed Controller for Wind Turbine System)

  • 현근호;손인환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.128-131
    • /
    • 2005
  • In this paper a robust controller using adaptive backstepping technique is proposed to control the speed of a wind turbine system. To make wind power generation truly cost effective and reliable, advanced and robust control algorithms are derived to on-line adjust the excitation winding voltage of the generator based on both mechanical and electrical dynamics. This method is shown to be able to achieve smooth and asymptotic rotor position tracking, as justified by analysis.

  • PDF

소형 풍력발전 시스템을 위한 CRIO 기반의 실시간 제어 시스템 설계 및 다양한 형태의 MPPT 알고리즘 성능 비교 분석 (Design of CRIO-based real-time controller for small-sized wind turbine generating system and comparative study on performance of various MPPT algorithms)

  • 김수진;김병문;김성호
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.55-61
    • /
    • 2011
  • 10KW 이하의 소형 풍력 발전 시스템은 언덕이나, 공원, 도시와 같은 협소한 지역에 유연하게 설치될 수 있다는 장점으로 인해 신재생에너지 분야에서 지속적인 연구/개발이 이루어지고 있다. 소형 풍력 발전기는 낮은가격, 고신뢰도 및 고성능이 중요시되기 때문에 최대 전력을 추종하기 위한 다양한 기법이 요구된다. 일반적으로 제어기의 출력은 DC 부하에 전원을 공급하기 때문에 48V 배터리에 연결되어 동작된다. 본 논문에서는 소형 풍력 발전 시스템을 위한 FPGA 기반 MPPT 제어기를 제안하고자하며, 제안된 시스템에서의 다양한 MPPT 알고리즘의 성능을 검증하기 위해 NI 사에서 제작된 Compact-RIO 컨트롤러를 사용하였다.

토크모드 기반의 토크 제어 방법을 적용한 2.75MW 풍력터빈의 동적 응답 (Dynamic Response of a 2.75MW Wind Turbine Applying Torque Control Method Based on Torque-Mode)

  • 임채욱
    • 한국유체기계학회 논문집
    • /
    • 제16권6호
    • /
    • pp.5-11
    • /
    • 2013
  • Torque control methods of wind turbine are mainly classified into two methods: torque-mode and speed-mode methods. The traditional torque-mode method, in which generator torque proportional to square of generator speed is determined, has been chosen in many wind turbines but its response is slower as they are larger in multi-MW size. Torque control methods based on both speed-mode and torque-mode can be used to make response of wind turbine faster. In this paper, two torque control methods based on the traditional torque-mode method are applied to a 2.75 MW wind turbine. It is shown through some simulation results for real turbulence wind speeds that torque control method based on torque-mode has the merit of reducing fluctuations of generated power than PI controller based on speed-mode.

풍력 발전시스템 피치 제어에 관한 연구 (Pitch Control for Wind Turbine Generator System)

  • 박종혁;노태수;문정희;김지언
    • 한국항공우주학회지
    • /
    • 제34권12호
    • /
    • pp.25-34
    • /
    • 2006
  • 본 논문에서는 풍력 발전시스템의 피치 제어 알고리즘 설계 기법을 검토하고 비선형 시뮬레이션을 수행한 결과를 제시한다. 풍력 발전시스템을 다몸체 시스템으로 간주하고 로터 블레이드에 작용하는 공력 및 토크 계산을 위해 블레이드 요소 및 모멘텀 이론을 근거로 공력 모델링을 수행하였다. 제어기 설계를 위해, 풍력 발전시스템은 서로 상대적으로 구속한 체 운동하는 1 자유도 시스템으로 가정하여 선형 방정식을 수립하고, 로터 회전속도를 제어하기 위해 PID 제어기를 설계하였다. FORTRAN 언어를 기반으로 작성된 비선형 시뮬레이터 WINSIM을 이용하여 다양한 풍속 시나리오와 운전 방식에서 제어기의 성능을 시뮬레이션을 통해 확인하였다.

풍력 터빈 모의 실험을 위한 Matlab 기반 가변 토오크 시뮬레이터 개발 (Development of Matlab-based Variable Torque Simulator for wind Turbine Systems)

  • 김수진;김성호;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.396-402
    • /
    • 2010
  • In this paper the principles and structure of a WTS (Wind Turbine Simulator) are described. The proposed WTS is a versatile system specially designed for the purpose of developing and testing new control strategies for wind energy conversion systems. The simulator includes two sub-systems; a torque controller which controls a 3-phase induction motor in order to simulate the wind turbine and wind speed generator which can simulate an actual wind speed. In order to make the proposed system working in real-time, two sub-systems are incorporated into one simulink block by using Real-time workshop. The performance of the proposed system is verified by considering various wind speeds.

개별 블레이드 피치 제어 방식을 이용한 수직축 풍력발전기의 성능 해석 및 시스템 구현 (Aerodynamic Analysis and System Implementation of Vertical Axis Wind Turbine using Individual Blade Pitch Control Method)

  • 정인오;이윤한;황인성;김승조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3347-3352
    • /
    • 2007
  • This paper describes a research for the performance improvement of the straight-bladed vertical axis wind turbine. To improve the performance of VAWT, the individual blade pitch control method is adopted. For the wind turbine, CFD analysis is carried out by changing blade pitch angle according to the change of wind speed and wind direction. By this method, capacity and power efficiency of VAWT are obtained according to the wind speed and rotating of rotor, and could predict the overall performance of VAWT. It was manufactured to verify performance of the experimental system that consists of rotor including four blades and base. Furthermore, torque sensor and power generator were installed. Also, active controller which can change the pitch angle of the individual blade according to the wind speed and direction was used.

  • PDF

풍력터빈 축 진동 응답에 대한 피치 게인-스케쥴링의 효과 (An Effect of Pitch Gain-Scheduling on Shaft Vibration Response of Wind Turbine)

  • 임채욱;조준철
    • 한국유체기계학회 논문집
    • /
    • 제15권2호
    • /
    • pp.36-40
    • /
    • 2012
  • Pitch control of wind turbine is activated above rated wind speed for the purpose of rated power regulation. When we design pitch controller, its gain-scheduling is essential due to nonlinear characteristics of aerodynamic torque. In this study, 2-mass model including a vibration mode of drive-train for a 2 MW wind turbine is considered and pitch control with gain-scheduling using a linearization analysis of the nonlinear aerodynamic torque is applied. Some simulation results for the pitch gain-scheduling under step wind speed are presented and investigated. It is shown that gain-scheduling in pitch control is important especially in the region of high wind speeds when there exists a vibration mode of drive-train.

아크형 날개를 이용한 항력식 수직축 소형 풍력 터빈 설계 (Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade)

  • 김동건;김문경;차득근;윤순현
    • 한국유체기계학회 논문집
    • /
    • 제9권2호
    • /
    • pp.7-12
    • /
    • 2006
  • This study is to develop a system of electric power generation utilizing the wind resources available in the domestic wind environment. We tested drag-type vortical wind turbine models, which have two different types of blades: a flat plate and circular arc shape. Through a performance test, conditions of maximum rotational speed were found by measuring the rpm of wind turbine. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller From the measurements for miniature turbine models with two different blades, the circular arc shape was found to Produce a maximum rotational speed for the same wind velocity condition. Based on this result, the prototype with the circular arc blade was made and tested. We found that it produces 500W at the wind velocity of 10.8 m/s and the power coefficient was 20%.

풍력발전기 초기단계 모사실험을 위한 4자유도 수학적 모형에 대한 연구 (Study on 4-degree-of-freedom Mathematical Model for Simulation of Wind Turbine System at Initial Design Stage)

  • 신윤호;문석준;정태영
    • 한국소음진동공학회논문집
    • /
    • 제23권8호
    • /
    • pp.681-689
    • /
    • 2013
  • The commercial tools to simulate the non-linear dynamic characteristics of wind turbine system are various but, the tool take much time to simulate the control algorithm and require many input variables. In this paper, the procedures to derive the simplified 4-degree-of-freedom mathematical model of a 2-MW wind turbine which could be used at the initial design stage of the controller are proposed based on RISO's suggested method. In this model, the 1st tower fore-after bending motion and 1st blade flapping motion are also considered in addition to the rotor-generator rotation motion in the 2-DOF model. The effectiveness of the 4-DOF model is examined comparing with the 2-DOF model and verification of the simplified model is accomplished through modal analysis for whole wind turbine system.

풍력단지 제어를 위한 생산가능 출력에 대한 연구 (Study on the Available Power of a Wind Turbine for Wind Farm Control)

  • 오용운;백인수;남윤수;라요한
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2014
  • A study on the available power of a wind turbine to be used for wind farm control was performed in this study, To accurately estimate the available power it is important to obtain a suitable wind which represents the three dimensional wind that the wind turbine rotor faces and also used to calculate the power. For this, two different models, the equivalent wind and the wind speed estimator were constructed and used for dynamic simulation using matlab simulink. From the comparison of the simulation result with that from a commercial code based on multi-body dynamics, it was found that using the hub height wind to estimate available power from a turbine results in high frequency components in the power prediction which is, in reality, filtered out by the rotor inertia. It was also found that the wind speed estimator yielded less error than the equivalent wind when compared with the result from the commercial code.