• 제목/요약/키워드: Wind turbine controller

검색결과 126건 처리시간 0.026초

가변속 풍력 발전용 영구자석형 동기발전기의 적응 슬라이딩 모드 제어기 설계 (Adaptive Sliding Mode Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System)

  • 김성수;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.315-319
    • /
    • 2016
  • This paper proposes a simple adaptive sliding mode control algorithm for controlling a permanent magnet synchronous generator (PMSG) of a MW-class direct-driven wind turbine system. The proposed adaptive sliding mode controller does not require accurate knowledge of the PMSG parameter or turbine torque values. The proposed controller can accurately track the reference angular speed computed by the maximum power point tracking(MPPT) algorithm. Finally, this paper gives Matlab/Simulink simulation results to verify the practicality and effectiveness of the proposed adaptive sliding mode controller.

가변 풍속시 운전모드 절환을 고려한 이중여자 유도형 풍력발전기의 시뮬레이터 (A Wind Turbine Simulator for Doubly-Fed Induction-type Generator with Automatic Operation Mode Change during Wind Speed Variation)

  • 송승호;심동준;정병창
    • 전력전자학회논문지
    • /
    • 제11권4호
    • /
    • pp.349-360
    • /
    • 2006
  • 이중여자 유도형 풍력발전 시스템은 다른 풍력발전 시스템에 비하여 에너지 변환 효율이 우수하고 전력변환 장치의 용량이 작아도 되는 특성이 있다. 이러한 특징을 살리기 위해서는 풍력발전 시스템에 입력되는 에너지의 변화를 고려하여 발전기의 제어기를 설계해야 한다. 본 논문에서는 상위 제어기와 하위 제어기로 구분하여 이중여자 유도 발전기의 제어기를 설계하였다. 상위 제어가는 풍력발전 시스템에 입력되는 에너지가 변화함에 따라서 발전기의 운전모드를 결정하고 제어 기준값을 계산한다. 발전기의 운전모드는 최저 속도 제어와 가변 토크 제어, 그리고 토크 제한 모드로 구성된다. 하위 제어기는 상위 제어기의 지령에 따라서 발전 시스템의 전류를 제어한다. 또한 본 논문에서는 3kW급 권선형 유도기를 사용한 이중여자 유도형 풍력발전기의 시뮬레이터를 제작하였다. 설계한 제어기는 시뮬레이터에 적용하여 실험적으로 검증하였다.

가변속 풍력 발전용 영구자석형 동기발전기의 SDRE 기반 준최적 비선형 제어기 설계 (SDRE Based Near Optimal Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System)

  • 박형무;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.28-33
    • /
    • 2015
  • In this paper, we propose a near optimal controller design method for permanent magnet synchronous generators (PMSGs) of MW-class direct-driven wind turbine systems based on SDRE (State Dependent Riccati Equation) approach. Using the solution matrix of an SDRE, we parameterize the optimal controller gain. We present a simple algorithm to compute the near optimal controller gain. The proposed optimal controller can enable PMSGs to precisely track the reference speed determined by the MPPT algorithm. Finally, numerical simulation results are given to verify the effectiveness of the proposed optimal controller.

풍력발전시스템의 강풍제어기 개발 및 시스템 구성 (Implementation of Wind Power System and Development of a Automatic Tail Safety Controller)

  • 최정훈;문채주;장영학;이현주
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 춘계학술대회 논문집
    • /
    • pp.424-428
    • /
    • 2004
  • A wind turbine system converts wind energy into electric energy, the system operated under normal environmental conditions. In case of particular turbulent wind flow such as typhoon, hurricane etc, the control of a blade used to a yaw control and a pitch control method. A small wind turbine has not a speed control system to only a manual tail safety brake. This paper shows a automatic tail safety brake controller based on feedback control using wind velocity. The controller composed of wired motor, relay system, steel wired motor him down a perpendicular to wind flow and then the blade speed reduced high to zero. The operation of automatic tail safety controller verified by manual test.

  • PDF

Alleviating the Tower Mechanical Load of Multi-MW Wind Turbines with LQR Control

  • Nam, Yoonsu;Kien, Pham Trung;La, Yo-Han
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.1024-1031
    • /
    • 2013
  • This paper addresses linear quadratic regulation (LQR) for variable speed variable pitch wind turbines. Because of the inherent nonlinearity of wind turbines, a set of operating conditions is identified and then a LQR controller is designed for each of the operating points. The feedback controller gains are then interpolated linearly to get a control law for the entire operating region. In addition, the aerodynamic torque and effective wind speed are estimated online to get the gain-scheduling variable for implementing the controller. The potential of this method is verified through simulation with the help of MATLAB/Simulink and GH Bladed. The performance and mechanical load when using LQR are also compared with those obtained when using a PI controller.

Monitoring system for the wind-induced dynamic motion of 1/100-scale spar-type floating offshore wind turbine

  • Kim, C.M.;Cho, J.R.;Kim, S.R.;Lee, Y.S.
    • Wind and Structures
    • /
    • 제24권4호
    • /
    • pp.333-350
    • /
    • 2017
  • Differing from the fixed-type, the dynamic motion of floating-type offshore wind turbines is very sensitive to wind and wave excitations. Thus, the sensing and monitoring of its motion is important to evaluate the dynamic responses to the external excitation. In this context, a monitoring system for sensing and processing the wind-induced dynamic motion of spar-type floating offshore wind turbine is developed in this study. It is developed by integrating a 1/00 scale model of 2.5MW spar-type floating offshore wind turbine, water basin equipped with the wind generator, sensing and data acquisition systems, real-time CompactRIO controller and monitoring program. The scale model with the upper rotatable blades is installed within the basin by means of three mooring lines, and its translational and rotational motions are detected by 3-axis inclinometer and accelerometers and gyroscope. The detected motion signals are processed using a real-time controller CompactRIO to calculate the acceleration and tilting angle of nacelle and the attitude of floating platform. The developed monitoring system is demonstrated and validated by measuring and evaluating the time histories and trajectories of nacelle and platform motions for three different wind velocities and for eight different fairlead positions.

풍력 터빈 시스템의 강인 피치 제어 (A Robust Pitch Control of Wind Turbine Systems)

  • 한명철;성창민;황욱
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1287-1293
    • /
    • 2013
  • In this paper, we consider variable speed wind turbine systems containing uncertain elements. Though PI controller is generally used for pitch control, it cannot guarantee a stability and performance of the complicated wind turbine systems. A robust pitch control scheme is proposed to regulate the electric power output above the rated wind speed. The pitch controller is designed in order to guarantee uniform boundedness and uniform ultimate boundedness based on the bound values of the set where the uncertainties are laid or moves. In order to verify the proposed control scheme, we present stability analysis and simulation results using Matlab/Simulink.

Wind Turbine Simulators for Control Performance Test of DFIG

  • Abo-Khalil, Ahmed;Lee, Dong-Choon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.192-194
    • /
    • 2007
  • This paper proposes a new wind turbine simulator using a squirrel cage induction for control performance test of DFIG (doubly-fed induction generator). The turbine static characteristics are modeled using the relation between the turbine torque versus the wind speed and the blade pitch angle. The turbine performance is subjected to a real wind speed pattern by modeling the wind speed as a sum of harmonics with a wide range of frequency. The turbine model includes the effect of the tower shadow and wind shear. A pitch angle controller is designed and used to protect the coupled generator by limiting the turbine speed to the maximum value. Experimental results are provided for a 3[kW] wind turbine simulator at laboratory.

  • PDF

발전기 속도 변화율을 이용한 신경망피치제어기 (Neural Network Pitch Controller of Wind Turbine using Changing Rate of Generator Speed)

  • 홍민호;김호찬;허종철;강민제
    • 한국지능시스템학회논문지
    • /
    • 제24권4호
    • /
    • pp.366-371
    • /
    • 2014
  • 본 논문에서는 정격풍속 이상에서 발전량을 일정하게 유지하기 위하여 회전속도의 변화율을 이용한 신경망 피치제어기가 제안되었다. 제안된 신경망 피치제어기는 발전기의 정격 회전속도와 현재 회전속도의 차이를 기본정보로 사용하고 추가적으로 발전기 회전속도의 변화율을 사용하였다. 시뮬레이션은 Matlab/simulink에서 수행되었으며, 시뮬레이션을 통해 제안된 피치제어기를 사용한 풍력발전기는 발전기의 정격 회전속도인 122.9[rad/s]로 잘 유지 되는 것을 확인하였다.

Neural network based direct torque control for doubly fed induction generator fed wind energy systems

  • Aftab Ahmed Ansari;Giribabu Dyanamina
    • Advances in Computational Design
    • /
    • 제8권3호
    • /
    • pp.237-253
    • /
    • 2023
  • Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.