• Title/Summary/Keyword: Wind turbine blades

Search Result 265, Processing Time 0.018 seconds

Time Domain Prediction and Analysis of Low Frequency Noise from Wind Turbine using Hybrid Computational Aeroacoustics (CAA) Method (복합 전산 공력음향학(CAA) 방법을 이용한 시간영역 풍력터빈 저주파수 소음 예측과 분석)

  • Lee, Gwang-Se;Cheong, Cheolung;Kim, Hyung-Taek;Joo, Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.369-376
    • /
    • 2013
  • Using Lowson's acoustic analogy, low frequency noise of a wind turbine (WT) is predicted in time domain and the noise sources contributing to the low frequency noise is analyzed. To compute averaged pressure distribution on blades of the WT as noise source, XFOIL is utilized. The blade source domain is divided into several segments along the span direction to compute force exerted on air surrounding the blade segments, which is used as input for noise prediction. The noise sources are decomposed into three terms of force fluctuation, acceleration and velocity terms and are analyzed to investigate each spectral contribution. Finally, predicted spectra are compared with measured low frequency noise spectrum of a wind turbine in operation. It is found that the force fluctuation component contributes strongly in low frequency range with increasing wind speed.

A Study on Optimmal Design of Filament Winding Composite Tower for 2 MW Class Horizontal Axis Wind Turbine Systems (2 MW급 대형 수평축 풍력발전시스템을 위한 필라멘트 와인딩 복합재 타워의 최적설계에 관한 연구)

  • Lim, Sung-Jin;Kong, Chang-Duk;Park, Hyun-Bum
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.54-61
    • /
    • 2012
  • In this study, a specific structural design procedure for 2 MW class glass/epoxy composite wind turbine system towers is newly proposed through load case study, trade-off study, optimal structural design and structural analysis. Optimal tower design is very important because its cost is about 20% of the wind turbine system's cost. In the structural design of the tower, three kinds of loads such as wind load, blades, nacelle and tower weight and blade aerodynamic drag load should be considered. Initial structural design is carried out using the netting rule and the rule of mixture. Then the structural safety and stability are confirmed using a commercial finite element code, MSC NASTRAN/PATRAN. The finally proposed tower configuration meets the tower design requirements.

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

Aerodynamic Performance Prediction of a Counter-rotating Wind Turbine System with Wake Effect (후류영향을 고려한 상반회전 풍력발전 시스템의 공력성능 예측에 관한 연구)

  • Dong, Kyung-Min;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.20-28
    • /
    • 2002
  • In this paper, the aerodynamic performance prediction of a 30kW counter-rotating (C/R) wind turbine system has been made by using the momentum theory as well as the two-dimensional quasi-steady strip theory with special care on the wake and the post-stall effects. In order to take into account the wake effects in the performance analysis, the wind tunnel test data obtained for a scaled blade are used. Both the axial and rotational inductions behind the auxiliary rotors are determined through the wake model. In addition, the optimum chord and twist distributions along the blades are obtained from the Glauert's optimum actuator disk model considering the Prandtl's tip loss effect. The performance results of the counter-rotating wind turbine system are compared with those of the conventional single rotor system and demonstrated the effectiveness of the counter-rotating wind turbine system.

Study on a 500W Class Wind Turbine using a High Efficiency Composite Blades (고효율 복합재 블레이드를 사용한 500W급 풍력터빈에 관한 연구)

  • Kong, Chang-Duk;Choi, Su-Hyun;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.201-208
    • /
    • 2009
  • Recently, the wind energy has been widely used as a renewable energy resource due to lack and environmental issues of the mostly used fossil fuel. This work is to develop a 500W class small wind turbine blade which will be applicable to relatively low speed region like Korea and for the domestic use. For this blade a high efficiency wind turbine blade was designed with the proposing aerodynamic design procedure, and a light and low cost composite structure blade was designed considering fatigue life. Structural analyses including load case study, stress, deformation, buckling and vibration analysis were performed using the Finite Element Method. The fatigue life was estimated using the load spectrum analysis and the Miner rule. In order to evaluate the designed blade, the structural and aerodynamic performance tests were carried out, and the test results were compared with the analysis results.

능동 비틀림 제어에 용이한 블레이드의 스파형상 선정

  • Bae, Jae-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.184-190
    • /
    • 2015
  • On wide variety of fields, studies on active twist control are becoming more active. For effective twist control, blades have to have low torsional stresses with high torsional deformations to the same magnitude of torque acting on its cross-section. In this study, 2D sectional analysis and 3D finite element analysis were made for 5 different blades with each having different cross - sections which have different spars. The results from 2D sectional analysis, were then put into 3D blade deformation and stress calculations which lead to analysis. Outcomes from 2D and 3D analysis, showed that on the same torque and concentrated load conditions, the blade with 'C' shaped spar was the best of all the blades which were used in this study.

  • PDF

Feasibility Study on Packaged FBG Sensors for Debonding Monitoring of Composite Wind Turbine Blade (풍력발전기 복합재 블레이드의 접착 분리 모니터링을 위한 패키징 광섬유 브래그 격자 센서 탐촉자의 사용성 검토)

  • Kwon, Il-Bum;Choi, Ki-Sun;Kim, Geun-Jin;Kim, Dong-Jin;Huh, Yong-Hak;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.382-390
    • /
    • 2011
  • Smart sensors embedable in composite wind turbine blades have been required to be researched for monitoring the health status of large wind turbine blades during real-time operation. In this research, the feasibility of packaged FBG sensor probes was studied through the experiments of composite blade trailing edge specimens in order to detect cracking and debonding damages. The instants of cracking and debonding generated in the shear web were confirmed by rapid changes of the wavelength shifts from the bare FBG sensor probes. Packaged FBG sensor probes were proposed to remove the fragile property of bare FBG sensor probes attached on composite wind blade specimens. Strain and temperature sensitivity of fabricated probes installed on the skin of blade specimen were almost equal to those of a bare FBG sensor. Strain sensitivity was measured to be ${\mu}{\varepsilon}$/pm in a strain range from to 0 to 600 ${\mu}{\varepsilon}$, and the calculated temperature sensitivity was to be 48 pm/$^{\circ}C$ in the heating test up to 80 degree.

Three-Dimensional Flow Characteristics in a Linear Turbine Cascade Passage (선형 터빈 케스케이드 통로에서의 3차원 유동 특성)

  • 차봉준;이상우;이대성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3148-3165
    • /
    • 1993
  • A cascade wind tunnel test for a turbine nozzle, which was designed for a small turbo jet engine in a previous study, has been conducted to evaluate its aerodynamic performance and losses. The large-scale blades were based on the mid-span profile of the nozzle. Oil film flow structure, and then 3-dimensional velocity components were measured in the flow passage with a 5-hold pressure probe, in addition to turbulent intensities at mid-span of cascade exit using a hot-wire anemometer. From this study, 3-dimensional growth of horseshoe and passage vortices in the downstream direction was clearly understood with near-wall flow phenomena. In addition, secondary flow and losses associated with the blade configuration were obtained in detail.

10kW wind turbine blade aerodynamic design and verification (10kW 풍력발전기 블레이드 형상 개념 설계 및 타당성 검증)

  • Yoo, Cheol;Son, Eunkuk;Hwang, Sungmok;Kim, Daejin;Kim, Seokwoo
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.42-49
    • /
    • 2017
  • A 10kw wind turbine blade aerodynamic design was carried out using the self-developed program AeroDA. The concept, basic shape, and optimization were designed and verified. A performance analysis was carried out and the key factors in each design stage are summarized. In addition, a guide for the placement of cross-section airfoils constituting the blades is presented, and the importance of the stall margin test as a method of verifying aerodynamic design is summarized. In order to verify the design program AeroDA, we compared the results of the performance analysis with a specialized program DNVGL_Bladed.

Development of Fault Diagnostic Algorithm based on Spectrum Analysis of Acceleration Signal for Wind Turbine System (가속도 신호의 주파수 분석에 기반한 풍력발전 고장진단 알고리즘 개발)

  • Ahn, Sung-Ill;Choi, Seong-Jin;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.675-680
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around the world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance. CMS(Condition Monitoring System) can be used to aid plant operator in achieving these goals. Its aim is to provide operators with information regarding th e health of their machine, which in turn, can help them improve operation efficiency. In this work, wind turbine fault diagnostic algorithm which can diagnose the mass unbalance and aerodynamic asymmetry of the blades is proposed. Proposed diagnostic algorithm utilizes both FFT(Fast Feurier Transform) of the signal from accelerometers installed inside of nacelle and simple diagnostic logic. Furthermore, to verify the applicability of the proposed system, 3W small sized wind turbine system is tested and physical experiments are carried out.