• Title/Summary/Keyword: Wind tunnel Testing

Search Result 176, Processing Time 0.028 seconds

The influence of model surface roughness on wind loads of the RC chimney by comparing the full-scale measurements and wind tunnel simulations

  • Chen, Chern-Hwa;Chang, Cheng-Hsin;Lin, Yuh-Yi
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • A wind tunnel test of a scaled-down model and field measurement were effective methods for elucidating the aerodynamic behavior of a chimney under a wind load. Therefore, the relationship between the results of the wind tunnel test and the field measurement had to be determined. Accordingly, the set-up and testing method in the wind tunnel had to be modified from the field measurement to simulate the real behavior of a chimney under the wind flow with a larger Reynolds number. It enabled the results of the wind tunnel tests to be correlated with the field measurement. The model surface roughness and different turbulence intensity flows were added to the test. The simulated results of the wind tunnel test agreed with the full-scale measurements in the mean surface pressure distribution behavior.

Assessment of across-wind responses for aerodynamic optimization of tall buildings

  • Xu, Zhendong;Xie, Jiming
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.505-521
    • /
    • 2015
  • A general approach of aerodynamic optimization of tall buildings is presented in this paper, focusing on how to best compromise wind issues with other design aspects in the most efficient manner. The given approach is reinforced by establishing an empirical method that can quickly assess the across-wind loads and accelerations as a function of building frequencies, building dimensions, aspect ratios, depth-to-width ratios, and site exposures. Effects of corner modifications, including chamfered corner and recessed corner, can also be assessed in early design stages. Further, to assess the effectiveness of optimization by tapering, stepping or twisting building elevations, the authors introduce a method that takes use of sectional aerodynamic data derived from a simple wind tunnel pressure testing to estimate reductions on overall wind loads and accelerations for various optimization options, including tapering, stepping, twisting and/or their combinations. The advantage of the method is to considerably reduce the amount of wind tunnel testing efforts and speed up the process in finding the optimized building configurations.

Design and Numerical Analysis of Flexible Wing for Gust Response Alleviation (유연 날개 설계 및 돌풍응답완화 수치해석)

  • Lee, Sang-Wook;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Ha, Chul-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.203-206
    • /
    • 2006
  • In this study, the method of designing the flexible wing model which will be used for wind tunnel testing of gust response alleviation system was presented. The design concept proposed herein was validated by performing the modal testing of the flexible wing model manufactured for demonstration purpose. In addition, the study on the gust response alleviation using flexible wing control surface was performed. For this purpose, optimal control with output feedback was adopted for designing the control surface controller, and the effects of gust response alleviation was validated by performing the numerical simulation for the representative flexible wing model. The methods proposed and validated in this study can be applied for wind tunnel testing of the flexible wing for gust response alleviation.

  • PDF

Modeling and experimental comparative analysis on the performance of small-scale wind turbines

  • Basta, Ehab;Ghommem, Mehdi;Romdhane, Lotfi;Abdelkefi, Abdessattar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper deals with the design, wind tunnel testing, and performance analysis of small wind turbines targeting low-power applications. Three different small-size blade designs in terms of size, shape, and twisting angle are considered and tested. We conduct wind tunnel tests while measuring the angular speed of the rotating blades, the generated voltage, and the current under varying resistive loading and air flow conditions. An electromechanical model is also used to predict the measured voltage and power and verify their consistency and repeatability. The measurements are found in qualitative agreement with those reported in previously-published experimental works. We present a novel methodology to estimate the mechanical torque applied to the wind turbine without the deployment of a torque measuring device. This method can be used to determine the power coefficient at a given air speed, which constitutes an important performance indicator of wind turbines. The wind tunnel tests revealed the capability of the developed wind turbines to deliver more than 1225 mW when subject to an air flow with a speed of 7 m/s. The power coefficient is found ranging between 26% and 32%. This demonstrates the aerodynamic capability of the designed blades to extract power from the wind.

Tunable compression of wind tunnel data

  • Possolo, Antonio;Kasperski, Michael;Simiu, Emil
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.505-517
    • /
    • 2009
  • Synchronous wind-induced pressures, measured in wind-tunnel tests on model buildings instrumented with hundreds of pressure taps, are an invaluable resource for designing safe buildings efficiently. They enable a much more detailed, accurate representation of the forces and moments that drive engineering design than conventional tables and graphs do. However, the very large volumes of data that such tests typically generate pose a challenge to their widespread use in practice. This paper explains how a wavelet representation for the time series of pressure measurements acquired at each tap can be used to compress the data drastically while preserving those features that are most influential for design, and also how it enables incremental data transmission, adaptable to the accuracy needs of each particular application. The loss incurred in such compression is tunable and known. Compression rates as high as 90% induce distortions that are statistically indistinguishable from the intrinsic variability of wind-tunnel testing, which we gauge based on an unusually large collection of replicated tests done under the same wind-tunnel conditions.

Analysis of Drag Measurements on T-50 Aircraft Model Wind Tunnel Testing (T-50 항공기모델 풍동시험에서의 항력측정 연구)

  • Kim, Hyung-Kook;Yang, Hee-Don;Lee, Il-Woo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1564-1568
    • /
    • 2004
  • The requirements of internal balance were studied that should be considered on performing force & moment transonic wind tunnel testing to develop combat aircraft. In many insecure factors of test condition, uncertainty analysis was conducted to verify one drag count measurements. The analysis result was applied to T-50 aircraft model and compared for data verifaction. In conclusion, the aerodynamicist should estimate the validation and accuracy of test data by having an overall grasp of system components including internal balance. It will help him get high productivity of testing and effective validated data at tunnel.

  • PDF

Vulnerability of roofing components to wind loads

  • Jayasinghe, N.C.;Ginger, J.D.
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.321-335
    • /
    • 2011
  • The vulnerability of roofing components of contemporary houses built in cyclonic regions of Australia is assessed for increasing wind speeds. The wind loads and the component strengths are treated as random variables with their probability distributions derived from available data, testing, structural analysis and experience. Design details including types of structural components of houses are obtained from surveying houses and analyzing engineering drawings. Wind load statistics on different areas of the roof are obtained by wind tunnel model studies and compared with Australian/New Zealand Standard, AS/NZS 1170.2. Reliability methods are used for calculating the vulnerability of roofing components independently over the roof. Cladding and batten fixings near the windward gable edge are found to experience larger negative pressures than prescribed in AS/NZS 1170.2, and are most vulnerable to failure.

Updates to the wind tunnel method for determining design loads in ASCE 49-21

  • Gregory A. Kopp
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.163-178
    • /
    • 2023
  • The paper reviews and discusses the substantive changes to the ASCE 49-21 Standard, Wind Tunnel Testing for Buildings and Other Structures. The most significant changes are the requirements for wind field simulations that utilize (i) partial turbulence simulations, (ii) partial model simulations for the flow around building Appurtenances, along with requirements for determining wind loads on products that are used at multiple sites in various configurations. These modifications tend to have the effect of easing the precise scaling requirements for flow simulations because it is not generally possible to construct accurate models for small elements placed, for example, on large buildings at the scales typically available in boundary layer wind tunnels. Additional discussion is provided on changes to the Standard with respect to measurement accuracy and data acquisition parameters, such as duration of tests, which are also related to scaling requirements. Finally, research needs with respect to aerodynamic mechanisms are proposed, with the goal of improving the understanding of the role of turbulence on separated-reattaching flows on building surfaces in order to continue to improve the wind tunnel method for determining design wind loads.

On wind resistant properties of Tiger Gate suspension bridge

  • Xiang, H.F.;Chen, A.R.;Song, J.Z.
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 1998
  • Tiger Gate Bridge, a steel suspension bridge with a main span of 888 m and a stiffening box girder, is located at the Pearl River Estuary, Guangdong Province, one of the typhoon-prone area in China. Focusing on the developing of the full aeroelastic model of the bridge and simulation of the wind field of the bridge site in a large boundary wind tunnel at Tongji University, Shanghai, China, some main results about the wind resistant properties of the bridge including aerodynamic instability, buffeting responses both being in operation and erection stages by using of a full aeroelastic model wind tunnel testing are introduced. Some of analytical approaches to those aerodynamic behaviours are also presented, and compared with experimental data of the testing.

Wind-lens turbine design for low wind speed

  • Takeyeldein, Mohamed M.;Ishak, I.S.;Lazim, Tholudin M.
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.147-155
    • /
    • 2022
  • This research proposes a wind-lens turbine design that can startup and operate at a low wind speed (< 5m/s). The performance of the wind-lens turbine was investigated using CFD and wind tunnel testing. The wind-lens turbine consists of a 3-bladed horizontal axis wind turbine with a diameter of 0.6m and a diffuser-shaped shroud that uses the suction side of the thin airfoil SD2030 as a cross-section profile. The performance of the 3-bladed wind-lens turbine was then compared to the two-bladed rotor configuration while keeping the blade geometry the same. The 3-bladed wind-lens turbine successfully startup at 1m/s and produced a torque of 66% higher than the bare turbine, while the two-bladed wind-lens turbine startup at less than 4m/s and produced a torque of 186 % higher than the two-bladed bare turbine at the design point. Findings testify that adding the wind-lens could improve the bare turbine's performance at low wind speed.