• Title/Summary/Keyword: Wind system

Search Result 4,216, Processing Time 0.034 seconds

The Development of the Monitoring System for Power performance using the Lab View (LabView를 이용한 풍력발전 성능평가용 모니터링 시스템 개발)

  • Ko, Seok-Whan;Jang, Moon-Seok;Ju, Young-Chul;Lee, Yoon-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.69-74
    • /
    • 2009
  • Monitoring system is an absolutely-required system for assessing a performance and fatigue load of the wind turbine in an on-shore wind energy experimental research complex. It was implemented for the purpose of monitoring the wind information measured from a meteorological tower at the monitoring house, and of utilizing the measured data(fatigue data and electric analyzing data of wind turbine)for the performance assessment, by using the LabVIEW program. Then, by adding the performance assessment-related data acquired from the wind turbine during the performance assessment and the data recorder for synchronizing the data of meteorological tower, the system(BusDAQ) was implemented. Because it transmitted the data by converting the output 'RS-232' of data logger which measures the wind condition into CAN protocol, the data error rate was minimized. Also, This paper is introduced to make the best use of the developed monitoring system and to explain about construct of the system and detailed data communication of its system.

Study on Establishment of Wind Map of the Korean Peninsula(II. Low-Resolution Wind Mapping and Wind Resource Information System) (한반도 바람지도 구축에 관한 연구(II. 저해상도 바람지도화 및 풍력자원 정보체계))

  • Kim, Hyun-Goo;Jang, Moon-Seok
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.20-26
    • /
    • 2007
  • A low-resolution national wind map, which is a prerequisite for setting up the national dissemination target and strategy of wind energy development, has been established by numerical wind simulation using the synoptic wind map, developed at the first stage, as an upper boundary condition. Based on the wind map, Wind Resource Information System has been composed in order to support scientific and systematic wind resource assessment and analysis.

  • PDF

Economic Comparison of Wind Power Curtailment and ESS Operation for Mitigating Wind Power Forecasting Error (풍력발전 출력 예측오차 완화를 위한 출력제한운전과 ESS운전의 경제성 비교)

  • Wi, Young-Min;Jo, Hyung-Chul;Lee, Jaehee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.158-164
    • /
    • 2018
  • Wind power forecast is critical for efficient power system operation. However, wind power has high forecasting errors due to uncertainty caused by the climate change. These forecasting errors can have an adverse impact on the power system operation. In order to mitigate the issues caused by the wind power forecasting error, wind power curtailment and energy storage system (ESS) can be introduced in the power system. These methods can affect the economics of wind power resources. Therefore, it is necessary to evaluate the economics of the methods for mitigating the wind power forecasting error. This paper attempts to analyze the economics of wind power curtailment and ESS operation for mitigating wind power forecasting error. Numerical simulation results are presented to show the economic impact of wind power curtailment and ESS operation.

Performance Evaluation of Vertical Wind Power Generation System Structured on the Downtown Buildings Roof (도심 빌딩 옥상에 적용 가능한 풍력발전시스템의 성능 평가 연구)

  • Nah, Chae-Moon;Chung, Kwang-Seop;Kim, Young-Il;Kim, Dong-Hyeok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.3
    • /
    • pp.9-16
    • /
    • 2016
  • This study had the purpose on feasibility judgment through performance forecast of wind power generation system using the cross flow vertical type wind power turbine for the situation of domestic small size wind power technology development. Wind power generation system uses the principle of venturi tube that gathers the wind through the first guide vane, and second guide vein changes the angle of the wind simultaneously by playing the role of venturi tube. After this, wind got out from the second guide vane spins the wind power turbine and has the meaning of judging on the aspect of numerical interpretation the feasibility for the small size wind power generation through wind power generation system that comes out from the back.

The Effects of Data Assimilation on Simulated Wind Fields Using Upper-Air Observations (고층기상관측자료를 이용한 바람장 개선 효과 연구)

  • Jeong, Ju-Hee;Kwun, Ji-Hye;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1127-1137
    • /
    • 2007
  • We focused on effects on data assimilation of simulated wind fields by using upper-air observations (wind profiler and sonde data). Local Analysis Prediction System (LAPS), a type of data assimilation system, was used for wind field modeling. Five cases of simulation experiments for sensitivity analysis were performed: which are EXP0) non data assimilation, EXP1) surface data, EXP2) surface data and sonde data, EXP3) surface data and wind profiler data, EXP4) surface data, sonde data and wind profiler data. These were compared with observation data. The result showed that the effects of data assimilation with wind profiler data were found to be greater than sonde data. The delicate wind fields in complex coastal area were simulated well in EXP3. EXP3 and EXP4 using wind profiler data with vertically high resolution represented well sophisticated differences of wind speed compared with EXP1 and EXP2, this is because the effects of wind profiler data assimilation were sensitively adjusted to first guess field than those of sonde observations.

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

Design method and factors of offshore wind power system foundation (해상풍력발전 시스템 기초의 설계방법 및 설계인자)

  • Song, Won-June;Kyung, Doo-Hyun;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.646-657
    • /
    • 2010
  • Offshore wind power is one of the largest-scale solutions for a nuclear- and pollution-free electricity supply in the future. Recently, the research for offshore wind power has started in Korea. However, there has been little effort specifically made for the exploration and evaluation of mechanical characteristics for offshore underwater soil deposits. In offshore wind power system, this is important as consistent and safe maintenance of structural functionality of the system is key for the wind power system to be successfully implemented. In this study, case examples from foreign offshore wind power sites are selected and analyzed. And design methods and factors of offshore wind power system foundation are investigated.

  • PDF

Optimum Design of a Wind Power Generation System through Analysis of Wind Data (풍속자료(風速資料) 분석(分析)에 의한 풍역발전(風力發電)시스템 최적(最適) 설계(設計))

  • Lee, Chul-Hyung;Shin, Dong-Ryul
    • Solar Energy
    • /
    • v.4 no.2
    • /
    • pp.3-12
    • /
    • 1984
  • In this paper, how to design the wind power generation system is presented. It is shown that the wind system optimization can be achieved by consideration of the four factors; wind statistics, efficiency of conversion of wind energy to electrical energy, average annual energy extracted and load factor. The wind is characterized by a weibull probability function. The Weibull parameter is calculated for the characterizing wind and the primary design specification of ten different sites. Some graphs are presented, which can be used to design a wind system for maximum output of a specified load factor at given site. Two different systems, $V_c=0.4V_R$ and $V_c=0.5V_R$ are discussed, as samples, for investigation of the effects on the system through the variation of cut-in speed.

  • PDF

A design of vertical axis wind power generating system combined with Darrieus-Savonius for adaptation of variable wind speed (다변풍속 적응형 Darrieus-Sauonius 초합 수직푹 풍력발전 시스템의 설계)

  • 서영택;오철수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.185-192
    • /
    • 1996
  • This paper presents a design of vertical axis Darrieus wind turbine combine with Savonius for wind-power generating system to be adapted for variable wind speed. The wind turbine consists of two troposkien- and four Savonius-blades. Darrieus turbine is designed with diameter 9.4[m], chord length 380[mm], tip speed ratio 5. Savonius turbine is designed with diameter 1.8[m], height 2[m], tip speed ratio 0.95. The design of turbine is laid for the main data of rated wind speed 10[m/s], turbine speed 101.4[rpm]. The generating power is estimated to maximum power 20[kW], and this is converted to commercial power line by means of three phase synchronous generator-inverter system. Generating system is designed for operation on VSVF(variable speed variable frequency) condition and constant voltage system.

  • PDF

Studies on a Wind Turbine Generator System using a Shaft Generator System

  • Tatsuta Fujio;Tsuji Toshiyuki;Emi Nobuharu;Nishikata Shoji
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.177-184
    • /
    • 2006
  • In this paper a new dc-link type wind turbine generator system using a shaft generator system, which is widely used for power sources in a ship, is proposed. The basic configuration of the proposed wind turbine generating system is first explained. And the equations expressing the system are derived. Then the steady-state characteristics of the generating system are discussed. We use an experimental system that can simulate the characteristics of a wind turbine in this study, because it is hard to operate an actual wind turbine in a laboratory. In addition, the transient responses of this system are investigated when the velocity of the wind is changed. It is shown that experimental results were very close to the simulated ones, supporting the usefulness of the theory.