• Title/Summary/Keyword: Wind sector division

Search Result 14, Processing Time 0.017 seconds

Analysis of Local Wind in Busan Metropolitan Area According to Wind Sector Division - Part III : Division of Local Wind Sector over Busan - (바람권역 구분을 통한 부산지역 국지바람 분석 - Part III : 부산지역 상세 바람권역 구분 -)

  • Jung, Woo-Sik;Lee, Hwa-Woon;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.311-321
    • /
    • 2007
  • We have investigated coarse wind sectors in Busan metropolitan area and simulated detailed wind field using local atmospheric circulation model, RAMS in preceding studies (Part I, Part II). In this study, we divided and analyzed local wind sector in Busan according to the preceding results. We found that Busan metropolitan area is divided into 2 or 3 local wind sector in each coarse wind sector. The 9 coarse wind sectors were classified into 20 local wind sectors in total. But three local wind sectors were finally excluded because of these sectors were located on the complex hill area and the sea. Local wind sectors, therefore, in Busan metropolitan area were defined as 17 regimes. We assessed the location of air qualify monitoring sites at Busan metropolitan area using the information of these wind sectors. Most of these were located at proper points, but 6 sites were placed at 3 local wind sectors as a couple and no site was set up at 3 other sectors. Hence the location of these sites was in need of rearrange.

Analysis of Wind Sector Division for Pohang Area - Part I : Coarse Division of Wind Sector for Pohang Area Using Meteorological Observation Data - (포항지역에 대한 바람권역 분석 -Part I : 기상관측자료를 토대로 분석한 성긴 바람권역 분석-)

  • Jung, Jong-Hyeon;Leem, Heon-Ho;Leem, Hwa-Woon;Chang, Hyuk-Sang;Shon, Byung-Hyun
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.385-396
    • /
    • 2008
  • The air quality data is important for understanding and analyzing a surrounding influence. In that light, it is positively necessary for a propriety assessment to determine a location of the air quality monitoring sites. In this study, the climate analysis about temperature and wind, using the meteorological data in the Pohang, is conducted to do that. In the next stage, we distinguished the wind by east-west or north-south component, which has less correlation than temperature, analyzed and divided the wind sector. As the result, the wind circumstance of the Pohang is divided into major 5 wind sector; that is the urban area, the northeast coastal area, the east ocean and the west mountainous area. We think that an analysis on detailed wind sector by utilizing the numerical simulation is needed.

Analysis of Local Wind in Busan Metropolitan area According to Wind Sector Division - Part I : Coarse Division of Wind Sector using Meteorological Observation Data - (바람권역 구분을 통한 부산지역 국지바람 분석 - Part I : 기상관측 자료를 이용한 바람권역 대분류 -)

  • Lee, Hwa-Woon;Jung, Woo-Sik;Leem, Heon-Ho;Lee, Kwi-Ok;Choi, Hyun-Jung;Ji, Hyo-Eun;Lee, Hyun-Ju;Sung, Kyoung-Hee;Do, Woo-Gon
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.835-846
    • /
    • 2006
  • In this study, climate analysis and wind sector division were conducted for a propriety assessment to determine the location of air quality monitoring sites in the Busan metropolitan area. The results based on the meteorological data$(2000{\sim}2004)$ indicated hat air temperature is strongly correlated between 9 atmospheric monitoring sites, while wind speed and direction are not. This is because wind is strongly affected by the surrounding terrain and the obstacles such as building and tree. in the next stage, we performed cluster analysis to divide wind sector over the Busan metropolitan area. The cluster analysis showed that the Busan metropolitan area is divided into 6 wind sectors. However 1 downtown and 2 suburbs an area covering significantly broad region in Busan are not divided into independent sectors, because of the absence of atmospheric monitoring site. As such, the Busan metropolitan area is finally divided into 9 sectors.

Classification of Wind Sector for Assessment of Wind Resource and Establishment of a Wind Map in South Korea (남한지역 풍력자원 평가 및 바람지도 구축을 위한 바람권역 분류)

  • Jung, Woo-Sik;Lee, Hwa-Woon;Park, Jong-Kil;Kim, Hyun-Goo;Kim, Eun-Byul;Choi, Hyun-Jung;Kim, Dong-Hyuk;Kim, Min-Jung
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.899-910
    • /
    • 2009
  • We classified wind sectors according to the wind features in South Korea. In order to get the information of wind speed and wind direction, we used and improved on the atmospheric numerical model. We made use of detailed topographical data such as terrain height data of an interval of 3 seconds and landuse data produced at ministry of environment, Republic of Korea. The result of simulated wind field was improved. We carried out the cluster analysis to classify the wind sectors using the K-means clustering. South Korea was classified as 8 wind sectors to the annual wind field.

Classification of Wind Sector for Assessment of Wind Resource in South Korea (남한지역 풍력자원 평가를 위한 바람권역 분류)

  • Jung, Woo-Sik;Kim, Hyun-Goo;Lee, Hwa-Woon;Park, Jong-Kil;Lee, Soon-Hwan;Choi, Hyun-Jung;Kim, Dong-Hyuk
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.318-321
    • /
    • 2008
  • We classified wind sectors according to the wind features in South Korea. In order to get the information of wind speed and wind direction, we used and improved on the atmospheric numerical model. We made use of detailed topographical data such as terrain height data of an interval of 3 seconds and landuse data produced at ministry of environment, Republic of Korea. The result of simulated wind field was improved. We carried out the cluster analysis to classify the wind sectors using the K-means clustering. South Korea was classified as 10 wind sectors which have a clear wind features.

  • PDF

Analysis of Local Wind in Busan Metropolitan Area According to Wind Sector Division - Part II : Detailed Wind Information Using A Local-Scale Atmospheric Circulation Model - (바람권역 구분을 통한 부산지역 국지바람 분석 - Part II : 국지 대기유동장 수치모델을 이용한 상세 바람정보 -)

  • Jung, Woo-Sik;Lee, Hwa-Woon;Leem, Heon-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.103-119
    • /
    • 2007
  • We have analysed the observed surface and vertical meteorological data to get atmospheric information over the Busan metropolitan area. For this, we have selected 10 days in all season such as spring, summer I(Jangma season), summer II(hot season), autumn and winter. The result which have performed cluster analysis using atmospheric data represented that these days are included to most frequently appeared synoptic cluster. We have simulated wind field around Busan metropolitan area which is assigned as $1km^2$ using RAMS. The calculated air temperature and the wind speed was similar to the observed the that, and the trends of daily variation showed good agreement. RMSE and IOA also showed reliable value. These results indicated the RAMS is able to simulate and predict detailed atmospheric phenomenon.

Assessment of location of the air quality monitoring stations according to the analysis of wind sector division in Pohang (포항지역의 바람권역 분석에 따른 대기측정망 위치 평가)

  • Jung, Jong-Hyeon;Lee, Hyung-Don;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1931-1938
    • /
    • 2012
  • This study evaluated whether the installed location of air quality monitoring stations is at an optimal level in an effort to improve the health and environmental quality of the surrounding areas of the Pohang Steel Complex. As a result of analyzing the atmospheric flow field, it was found that the location of air quality monitoring stations was acceptable in case of Daesong-myeon(The 1st Division of Local Wind Sector) and Jukdo-dong(The 3rd Division of Local Wind Sector). However, the air quality monitoring stations installed at Daedo-dong and Jukdo-dong is judged to have made an overlapped measurement because the stations existed at the Division of the same Wind Sector. Accordingly, this study suggests that the further air quality monitoring stations should be additionally installed at Buk-gu areas of Pohang where more than 50% of the population of Pohang is living presently. As a result of the analysis of air contaminant concentration distribution, the Jangheung-dong area showed higher concentration distribution than other areas in case of $PM_{10}$ while the Daesong-myeon area showed a comparatively higher concentration distribution in case of $O_3$. Conclusively, this study indicates that it is high time to prepare an aggressive management of $PM_{10}$ and $O_3$ which causes a harmful impact on the life and health of the residents of the target areas.

Employment Statistics on Wind Energy and Analysis of Employment Effects of Korean Government's R&D Investment in Wind Power (풍력분야 고용 현황과 한국정부의 풍력분야 연구개발 투자의 고용창출 효과 분석)

  • Kim, Tae-Hyung;Song, Seung-Ho
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.28-34
    • /
    • 2020
  • The South Korean government invested about 560 billion won in research and development in the wind power sector over 30 years from 1989 to 2019. In addition, the government has been setting up conditions for the country's wind industry to grow through various policies, including the RPS (Renewable Energy Portfolio Standard). As a result, the size of Korea's wind industry has grown to 1.1 trillion won in annual sales and there are 2,000 people working in the wind energy sector. While the domestic market is weak due to the small size of Korea and there are problems with the NIMBY, the government has continued to support technology developments and support market policies. Despite insufficient performance in overseas markets, the effect of the government is still significant on the growth of the wind industry. In particular, the government's R&D investment program, which focuses on enhancing companies' competitiveness, has spurred job creation in the wind industry and a stable research environment for researchers. In this study, we compared the differences between methods of investigating employment statistics in Korea and those of other countries. We also proposed effective investment measures for the government by analyzing the investment effects according to value chain and types of organization.

Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses

  • Nguyen, Tuan-Cuong;Huynh, Thanh-Canh;Yi, Jin-Hak;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.385-403
    • /
    • 2017
  • In recent years, the wind energy has played an increasingly important role in national energy sector of many countries. To harvest more electric power, the wind turbine (WT) tower structure becomes physically larger, which may cause more risks during long-term operation. Associated with the great development of WT projects, the number of accidents related to large-scaled WT has also been increased. Therefore, a structural health monitoring (SHM) system for WT structures is needed to ensure their safety and serviceability during operational time. The objective of this study is to develop a hybrid damage detection method for WT tower structures by measuring vibration and impedance responses. To achieve the objective, the following approaches are implemented. Firstly, a hybrid damage detection scheme which combines vibration-based and impedance-based methods is proposed as a sequential process in three stages. Secondly, a series of vibration and impedance tests are conducted on a lab-scaled model of the WT structure in which a set of bolt-loosening cases is simulated for the segmental joints. Finally, the feasibility of the proposed hybrid damage detection method is experimentally evaluated via its performance during the damage detection process in the tested model.

Technology Competitiveness Analysis of New & Renewable Energy in Major Countries (주요국의 신재생에너지 분야 기술경쟁력 분석 연구)

  • Ha, Su-Jin;Choi, Ji-Hyeok;Oh, Sang Jin
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.72-84
    • /
    • 2022
  • As the threat of climate change escalates, 'net-zero' has become a priority for the international community, and the use of new and renewable energy sources is expected to play a significant role in reaching international carbon neutrality. Here, we evaluate technological competitiveness in terms of implementation and technology by analyzing scientific literature and patents in the new and renewable energy fields of five major countries. For the past 10 years (2009-2019), the most active areas of new and renewable energy research and development have been solar power, wind power, waste, and fuel cells. China is the forerunner in implementation, whereas the United States has the most advanced technology. Portfolio analysis revealed that Korea's fuel cell, the United States' bioenergy, China's waste, Japan's solar and fuel cell, and the European Union's wind power have shown to be in Star Field respectively. Technological competitiveness analysis found that Korea is lagging behind other countries in the new and renewable energy sector, and needs to set a new direction for future carbon-neutral research and development, investment, and policy.