• Title/Summary/Keyword: Wind rose

Search Result 68, Processing Time 0.019 seconds

A Case Study of Human Thermal Sensation (Comfort) in Plastic Houses (온실시설내 인간 열환경지수(열쾌적성)에 대한 사례연구)

  • Jung, Leeweon;Jin, Younghwan;Jeun, Yoona;Ko, Kyuman;Park, Hyungwook;Park, Sookuk
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1115-1129
    • /
    • 2016
  • To analyze human thermal environments in protected horticultural houses (plastic houses), human thermal sensations estimated using measured microclimatic data (air temperature, humidity, wind speed, and solar and terrestrial radiation) were compared between an outdoor area and two indoor plastic houses, a polyethylene (PE) house and a polycarbonate (PC) house. Measurements were carried out during the daytime in autumn, a transient season that exhibits human thermal environments ranging from neutral to very hot. The mean air temperature and absolute humidity of the houses were $14.6-16.8^{\circ}C$ (max. 22. $3^{\circ}C$) and $7.0-12.0g{\cdot}m^{-3}$ higher than those of the outdoor area, respectively. Solar (K) and terrestrial (L) radiation were compared directionally from the sky hemisphere (${\downarrow}$) and the ground hemisphere (${\uparrow}$). The mean $K{\downarrow}$ and $K{\uparrow}$ values for the houses were respectively $232.5-367.8W{\cdot}m^{-2}$ and $44.9-55.7W;{\cdot}m^{-2}$ lower than those in the outdoor area; the mean $L{\downarrow}$ and $L{\uparrow}$ values were respectively $150.4-182.3W{\cdot}m^{-2}$ and $30.5-33.9W{\cdot}m^{-2}$ higher than those in the outdoor area. Thus, L was revealed to be more influential on the greenhouse effect in the houses than K. Consequently, mean radiant temperature in the houses was higher than the outdoor area during the daytime from 10:45 to 14:15. As a result, mean human thermal sensation values in the PMV, PET, and UTCI of the houses were respectively $3.2-3.4^{\circ}C$ (max. $4.7^{\circ}C$), $15.2-16.4^{\circ}C$ (max. $23.7^{\circ}C$) and $13.6-15.4^{\circ}C$ (max. $22.3^{\circ}C$) higher than those in the outdoor area. The heat stress levels that were influenced by human thermal sensation were much higher in the houses (between hot and very hot) than in the outdoor (between neutral and warm). Further, the microclimatic component that most affected the human thermal sensation in the houses was air temperature that was primarily influenced by $L{\downarrow}$. Therefore, workers in the plastic houses could experience strong heat stresses, equal to hot or higher, when air temperature rose over $22^{\circ}C$ on clear autumn days.

Generation and Growth of Long Ocean Waves along the West Coast of Korea in March 2007 (2007년 3월 한국 서해안에 발생한 해양장파의 형성과 성장과정)

  • Choi, Byoung-Ju;Park, Yong-Woo;Kwon, Kyung-Man
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.453-466
    • /
    • 2008
  • In order to examine the generation mechanism of long ocean waves along the west coast of Korea and to understand the amplification process of the long ocean waves, sea level, atmospheric pressure and wind data observed every minute from 2007 March 29 to 2007 April 1 were analyzed and onedimensional numerical ocean model experiments were performed. An atmospheric pressure jump propagated southeastward from Backryungdo to Yeonggwang along the west coast of Korea with speed of $13{\sim}27\;m/s$ between 2007 March 30 23:00 and 2007 April 1 1:30. Average magnitude of pressure jump was 4.2 hPa. As a moving atmospheric jump propagated from north to south along the coast, long ocean waves were generated and the sea level abnormally rose or fell at Anheung, Kunsan, Wido and Yeonggwang. Average amplitude of sea level rise (or fall) was about 113.6 cm. In a one-dimensional numerical ocean model, nonlinear shallow water equations were numerically integrated and a moving atmospheric pressure jump with traveling speed of 24 m/s was used as an external force. While the atmospheric pressure jump travels over 60 m depth ocean, a long ocean wave is generated. Because the propagation speed of the atmospheric jump is almost equal to that of the long ocean wave, Proudman resonance occurs and the long ocean wave amplifies. As the atmospheric pressure jump moves into the coastal area shallower than 60 m, the speed of the long ocean wave decreases and Proudman resonance effect decreases. However, the amplitude of the long ocean wave increases and wave length becomes shorter because of shoaling effect. When the long ocean wave hits the land boundary, amplitude of the long ocean wave drastically amplifies due to reflection. Data analysis and numerical experiments suggest that the southeastward propagation of an atmospheric pressure jump over the shallow ocean, which is a necessary condition for Proudaman resonance, generated the long ocean waves along the west coast of Korea on 2007 March 31 and the ocean waves amplified due to shoaling effect in the coastal area and reflection at the shore.

Effect of El Niño and La Niña on the Coastal Upwelling in East Sea, South Korea (엘니뇨와 라니냐가 한국 동해 연안용승에 미치는 영향)

  • Seo, Ho-San;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.75-83
    • /
    • 2020
  • This study investigated the effects of El Niño and La Niña on coastal upwelling in the East Sea of Korea using long-term (1967-2017) water temperature observation data and Oceanic Niño Index (ONI). As a result of time series analysis of water temperature, the occurrence frequency of summer coastal upwelling was the highest in the southeastern (Ulgi ~ Gimpo) coast. In 1987-1988 and 1997-1998, when the annual fluctuations of ONI plunged more than 2.5, the water temperature in whole coast areas of the East Sea (Busan ~ Goseung) rose by 4 ~ 7 ℃. The temperature structure of the East Sea coastal water was different when El Niño was strong with ONI above 1.5 and La Niña with strong ONI below -0.8. When El Niño is strong, the water temperature anomaly in coastal waters is negative. This is due to the strong baroclinic tilting and the formation of shallow temperature stratification in the coastal waters. The strong La Niña season is opposite to the strong El Niño season, whereas the water temperature anomaly is positive. In addition, the baroclinic tilting is weaker than the time of strong El Niño and the temperature stratification is formed deeper than the time of strong El Niño. The formation of temperature stratification at shallow depths when El Niño is strong can increase the probability of occurrence coastal upwelling caused by southerly winds in the summer season. On the contrary, when La Niña is strong, occurrence of coastal upwelling is less likely even if the southerly wind blows continuously. This is because the temperature stratification is formed at deeper than when El Niño is strong.

A Study on Safe use of Pesticides and Pesticidal Poisoning Among the Korean Farmers (농약안전사용(農藥安全使用) 및 중독경험(中毒經驗)에 관(關)한 연구(硏究))

  • Yi, Taek-Ku
    • Journal of agricultural medicine and community health
    • /
    • v.6 no.1
    • /
    • pp.13-24
    • /
    • 1981
  • This study was conducted with 478 farm households located in Pyongtaek Gun of Gyonggi Do, Chongju City and Chongwon Gun of Chung Buk Do, and Hongchon Gun of Gangwon Do for the period of 10, September through 20, October 1980. It dealt with general features of the farmhouseholds, their practices of handling and using pescides, and relationship between safe use of pesticides and poisoning experiences. The results of the study are summarized as follows: 1. Of the total, 63.2% purchased pesticides mainly through the Agricultural Coops, and 95.4% transported them home separately from other goods. 2 Pesticides were sold contained mainly in glass bottles and paper bags. 3. Mixing of the respodents (87.5%) stored pesticides in sheds, warehouses and boxes. 4. Mixing containers and measuring tools were not used by the majority of the group studied. This indicates that there exist serious problems of safety and accuracy with regard to use of pesticides. 5. As to pesticide protective devices, gloves, respirators, goggles and boots were not used in general. Even in case of using them, their quality was not satisfactory. 6. Among the interviewees, 4.2% did not read pesticide label, 33.9% did not wash immediately when pesticide was spilled on the skin, 48.4% did not care the wind direction during pesticide application, and 17.0% did not wash hands when smoking a cigarette while pesticide is being handled. 7. Of the total, 40.4% were found to harvest vegetables within 10 days from the date of pesticide application, which indicates their unawareness of possible hazards by pesticide residues. 8. Empty pesticide containers or bags were not properly disposed of by majority of the respondents. Furthermore, impacts on the environment by the misuse or abuse of pesticides were not understood by 67.6% 9. Of the interviewees, 48.7% were found to have not received instructions on safe use of pesticides. 10. The rate of pesticidal poisoning experience was about 28.0% if minor symptoms excluded, and it rose to about 44.0% if included. Meanwhile, the rate of pesticidal poisoning tends to increase with the size of farm. 11. The study failed to show a statistically significant relationship between the rate of pesticidal poisoning and use of mixing container and/or measuring tools. However, use of gloves showed a statistical significance on the rate of pesticidal poisoning. 12. Among the poisoned cases, 19.0% were cared for in either hospitals or clinics.

  • PDF

Differences in the Soundscape Characteristics of a Natural Park and an Urban Park (자연공원과 도시공원의 Soundscape 특성 차이)

  • Gim, Ji-youn;Lee, Jae-Yoon;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.1
    • /
    • pp.112-118
    • /
    • 2017
  • The purpose of this study is to clarify the characteristics of the soundscape in a natural park and an urban park. The study sites were a natural park (Chiaksan Nationalpark) and an urban park (Rose Park) in Wonju City, Gangwon Province. Soundscape recording was conducted using Digital Recorder from April 2015 to January 2016. The analysis period was 8 days per season, with a total of 64 days (2 places). Analysis items were soundscape's daily cycle, soundscape type, and seasonal variation. According to the result of the daily cycle analysis of the soundscape, the natural park was dominated by the biophony in accordance with the cycle of the sun, and the airplane sound was observed in the daytime. Meanwhile, anthrophony was consistently produced in the urban park 24 hours a day. As a result of the detailed type analysis of the soundscape, the sources of biophony were classified into wild birds, mammals, insects and amphibians, and the sources of geophony were classified into rain and wind. The anthrophony was mostly airplane sound. In the urban park, wild birds appeared to most influence the biophonic sounds while rain and the wind were the most frequent sounds that contribute to geophony. The most influential components of anthrophony in the urban park were in the order of automobiles, people, music, construction, cleaning, and airplane sound. As a result of the seasonal difference analysis of the soundscape, it was statistically significant that the natural park shows higher biophony in spring, summer, and autumn compared to the urban park. Anthrophony in the urban park appeared to be higher than the natural park in all seasons. The significance of this study is that it is the first study to identify the characteristics of the soundscape of a natural park and an urban park emanating from different landscapes in South Korea.

Correlation between Meteorological Factors and Water Discharge from the Nakdong River Barrage, Korea (낙동강 하구역 해양물리환경에 미치는 영향인자 비교분석(I) - 하구둑 방류량과 기상인자 -)

  • Park, San;Yaan, Han-Sam;Lee, In-Cheal;Kim, Hean-Tae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • We estirmted the yearly and monthly variation in discharge from the Nakdong River Barrage. We studied the total monthly discharge, the mean daily discharge, and the maximum daily discharge based on the observational discharge data for the 11-year period 1996-2006. We also examined the correlation between the discharge and the meteorologiml factors that influence the river inflow. The results from this study are as follows. (1) The total monthly discharge for 11 years at the Nakdong River Barrage was $224,576.8{\times}10^6\;m^3$: The daily maximum was in 2003, with $56,292.3{\times}10^6\;m^3$. The largest daily mean release discharges occurred in August with $52,634.2{\times}10^6\;m^3$ (23.4% of the year), followed by July and September in that order with 23.1 and 17%, respectively. (2) The monthly pattern of discharge could be divided into the flood season for the period July-September (discharge =$1000{\times}10^6\;m^3$/day), the normal season from April to June and October (discharge=$300{\times}10^6\;m^3$/day), and the drought season from December to March (discharge < $300{\times}10^6\;m^3$/day). (3) Periods of high temperature, low evaporation loss, and short sunshine duration produced a much higher discharge in general. Conditions of low rainfall and high evaporation loss, as was the rose in 2003, tended to reduce the discharge, but high rainfall and low evaporation loss tended to increase the discharge as it did in 200l. (4) The dominant wind directions during periods of high discharge were NNE (15.5%), SW and SSW (13.1%), S(12.1%), and NE (10.8%) This results show that it run bring on accumulation of fresh water when northern winds are dominant, and it run flow out fresh water toward offslwre when southern winds are dominant.

  • PDF

Natural Heritage Values and Diversity of Geoheritages on Udo Island, Jeju Province (제주도 우도 지역 내 지질유산의 다양성과 가치)

  • Woo, Kyung Sik;Yoon, Seok Hoon;Sohn, Young Kwan;Kim, Ryeon;Lee, Kwang Choon;Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.290-317
    • /
    • 2013
  • The objectives of this study are to investigate the natural heritage and scientific value of various geosites on Udo Island, and to evaluate the sites as natural monuments and as world natural heritage properties. Udo Island includes a variety of geoheritage sites. Various land forms formed during the formation of the Someori Oreum formed by phreatomagmatic eruptions. The essential elements for the formation of Udo Island are the tuff cone, overflowing lava and overlying redeposited tuff sediments. Various coastal land forms are also present. About 6,000 years B.C., when sea-level rose close to its present level due to deglaciation since the Last Glacial Maximum, carbonate sediments have been formed and deposited in shallow marine environment surrounding Udo Island. In particular, the very shallow broad shelf between Udo Island and Jeju Island, less than 20 m in water depth, has provided perfect conditions for the formation of rhodoids. Significant amounts of rhodoids are now forming in this area. Occasional transport of these rhodoids by typhoons has produced unique beach deposits which are entirely composed of rhodoids. Additional features are the Hagosudong Beach with its white carbonate sands, the Geommeole Beach with its black tuffaceous sands and Tolkani Beach with its basalt cobbles and boulders. Near Hagosudong Beach, wind-blown sands in the past produced carbonate sand dunes. On the northern part of the island, special carbonate sediments are present, due to their formation by composite processes such as beach-forming process and transportation by typhoons. The development of several sea caves is another feature of Udo Island, formed by waves and typhoon erosion within tuffaceous sedimentary rocks. In particular, one sea cave found at a depth of 10 m is very special because it indicates past sea-level fluctuations. Shell mounds in Udo Island may well represent the mixed heritage feature on this island. The most valuable geoheritage sites investigated around Udo Isalnd are rhodoid depostis on beaches and in shallow seas, and Someori Oreum composed of volcanoclastic deposits and basalt lava. Beach and shallow marine sediments, composed only of rhodoids, appear to be very rare in the world. Also, the natural heritage value of the Someori Oreum is outstanding, together with other phreatomagmatic tuff cones such as Suwolbong, Songaksan and Yongmeori. Consequently, the rhodoid deposits and the Someori Oreum are worth being nominated for UNESCO World Natural Heritage status. The designation of Someori Oreum as a Natural Monument should be a prerequisite for this procedure.

A Study on Sea Surface Temperature Changes in South Sea (Tongyeong coast), South Korea, Following the Passage of Typhoon KHANUN in 2023 (2023년 태풍 카눈 통과에 따른 한국 남해 통영해역 수온 변동 연구)

  • Jae-Dong Hwang;Ji-Suk Ahn;Ju-Yeon Kim;Hui-Tae Joo;Byung-Hwa Min;Ki-Ho Nam;Si-Woo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • An analysis of the coastal water temperature in the Tongyeong waters, the eastern sea of the South Sea of Korea, revealed that the water temperature rose sharply before the typhoon made landfall. The water temperature rise occurred throughout the entire water column. An analysis of the sea surface temperature data observed by NOAA(National Oceanic and Atmospheric Administration) satellites, indicated that sea water with a temperature of 30℃ existed in the eastern waters of the eastern South Sea of Korea before the typhoon landed. The southeastern sea of Korea is an area where ocean currents prevail from west to east owing to the Tsushima Warm Current. However, an analysis of the satellite data showed that seawater at 30℃ moved from east to west, indicating that it was affected by the Ekman transport caused by the typhoon before landing. In addition, because the eastern waters of the South Sea are not as deep as those of the East Sea, the water temperature of the entire water layer may remain constant owing to vertical mixing caused by the wind. Because the rise in water temperature in each water layer occurred on the same day, the rise in the bottom water temperature can be considered as owing to vertical mixing. Indeed, the southeastern sea of Korea is a sea area where the water temperature can rise rapidly depending on the direction of approach of the typhoon and the location of high temperature formation.