• Title/Summary/Keyword: Wind prediction model

Search Result 560, Processing Time 0.025 seconds

NUMERICAL ANALYSIS OF THE GUST GENERATOR FOR KARI LOW SPEED WIND TUNNEL (KARI 중형 아음속 풍동용 돌풍 발생기의 수치해석)

  • Park Y. M.;Kwon K. J.;Lee S. W.;Kim T. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.275-279
    • /
    • 2005
  • The vortex convection and induced flow field behind the KARI 3m x 4m LSWT gust generator was computed by using Computational Fluid Dynamics. For the accurate simulation of vortex convection, inviscid, laminar, Spalart-Allmars k-e and k-w turbulence models were tested with the NAL gust generator configuration and Spalart-Allmaras turbulence model was selected for the prediction of induced flow field behind the KARI LSWT gust generator. The wind tunnel test was also carried out at KARI LSWT and the results were compared with CFD prediction.

  • PDF

Prediction of Industrial Noise Propagation Subjected to Ground Effect (지표면의 반사특성을 고려한 환경소음 예측)

  • 한상보
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.329-335
    • /
    • 2001
  • The analytical model of the ground wave can be used for the prediction of the noise level from a source above a plain and homogeneous ground surface with no obstacles nearby. Sound propagation along the surface of the ground can be affected by the roughness of the ground surface and the direction of the wind. The effects of the ground surface and the wind can be formulated in terms of the ground coefficient and the noise source parameter. Upward and downward conditions can also be addressed by considering the direction of the wind. The ground coefficient and the noise source parameter are estimated using the measured noise levels of two points under particular environmental condition, and the noise levels of arbitrary points under the same environmental condition can be estimated. The proposed method can be utilized to estimate the noise level of specific noise environment and its validity was confirmed with the results of actual field measurement.

  • PDF

Framework for improving the prediction rate with respect to outdoor thermal comfort using machine learning

  • Jeong, Jaemin;Jeong, Jaewook;Lee, Minsu;Lee, Jaehyun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.119-127
    • /
    • 2022
  • Most of the construction works are conducted outdoors, so the construction workers are affected by weather conditions such as temperature, humidity, and wind velocity which can be evaluated the thermal comfort as environmental factors. In our previous researches, it was found that construction accidents are usually occurred in the discomfort ranges. The safety management, therefore, should be planned in consideration of the thermal comfort and measured by a specialized simulation tool. However, it is very complex, time-consuming, and difficult to model. To address this issue, this study is aimed to develop a framework of a prediction model for improving the prediction accuracy about outdoor thermal comfort considering environmental factors using machine learning algorithms with hyperparameter tuning. This study is done in four steps: i) Establishment of database, ii) Selection of variables to develop prediction model, iii) Development of prediction model; iv) Conducting of hyperparameter tuning. The tree type algorithm is used to develop the prediction model. The results of this study are as follows. First, considering three variables related to environmental factor, the prediction accuracy was 85.74%. Second, the prediction accuracy was 86.55% when considering four environmental factors. Third, after conducting hyperparameter tuning, the prediction accuracy was increased up to 87.28%. This study has several contributions. First, using this prediction model, the thermal comfort can be calculated easily and quickly. Second, using this prediction model, the safety management can be utilized to manage the construction accident considering weather conditions.

  • PDF

Case Study of Wind Farm Design Using OpenWind - Youngdeok Wind Farm (OpenWind를 이용한 풍력단지설계 사례연구 -영덕풍력단지)

  • Kim, Hyun-Goo;Hwang, Hyo-Jeong;Kim, Ju-Hyun;Ko, Soo-Hee;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1169-1175
    • /
    • 2010
  • A case study for the design of a wind farm in complex terrain was carried out using the wind farm site analysis software OpenWind, which has an open-source platform and is free to use. The Youngdeok Wind Farm, constructed on mountainous terrain in Korea, was chosen as a model site; the design process reproduced using OpenWind. A comparison of the positions of the wind turbine derived from the OpenWind optimization process and the current positions were in good agreement. The annual energy production predicted by OpenWind compared with the prediction by the micrositing software, WindSim, were also validated to within 1%. Therefore, it was confirmed that OpenWind can be used for a practical wind farm design project. It is also anticipating that this paper will provide a prototype process for the design of a wind farm site and offer a database for the post-evaluation of a constructed wind farm in Korea.

Design of a 1-D CRNN Model for Prediction of Fine Dust Risk Level (미세먼지 위험 단계 예측을 위한 1-D CRNN 모델 설계)

  • Lee, Ki-Hyeok;Hwang, Woo-Sung;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.215-220
    • /
    • 2021
  • In order to reduce the harmful effects on the human body caused by the recent increase in the generation of fine dust in Korea, there is a need for technology to help predict the level of fine dust and take precautions. In this paper, we propose a 1D Convolutional-Recurrent Neural Network (1-D CRNN) model to predict the level of fine dust in Korea. The proposed model is a structure that combines the CNN and the RNN, and uses domestic and foreign fine dust, wind direction, and wind speed data for data prediction. The proposed model achieved an accuracy of about 76%(Partial up to 84%). The proposed model aims to data prediction model for time series data sets that need to consider various data in the future.

Performance Predictions for Sailing Yacht by Towing Tests and VPP Calculation (예인수조 시험 및 VPP 계산에 의한 세일링 요트의 성능 추정)

  • Yoo Jae-Hoon;Ahn Hae-Seong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.116-124
    • /
    • 2006
  • A model test was carried out, in order to verify the hydrodynamic performances of public 30 feet class sailing yacht. In the initial design stage, the performances and the running attitude of sail yacht including the hull form and sail plan, appendages were estimated by VPP, from which made the representative test conditions. A new experiment system such as captive model device was composed because the running attitude could be changed by wind conditions. The test results show that the minimum resistance is generated in the heeling 20 degree. which was expected in the initial design stage. It is thought to be the useful informations that the keel has an effects on hydrodynamic forces and resistance differences between the upwind and the downwind condition. Also this paper is associated with the state-of-the-art of calculating sailing yacht performance as this is performed in velocity Prediction program (VPP) The VPP results shows a typical shape of a sailing yacht and the designed yacht has the best performance at 120 degree angle of true wind with 20 knots.

Performance Predictions for Sailing Yacht (세일링 요트의 성능 추정에 관한 연구)

  • Yoo, Jae-Hoon;Ahn, Hae-Seong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.824-831
    • /
    • 2005
  • A model test was carried out, in order to verify the hydrodynamic performances of public 30 feet class sailing yacht. In the initial design stage, the performances and the running attitude of sail yacht including the hull form and sail plan, appendages were estimated by VPP, from which made the representative test conditions. A new experiment system such as captive model device was composed because the running attitude could be changed by wind conditions. The test results show that the minimum resistance is generated in the heeling 20 degree, which was expected in the initial design stage. It is thought to be the useful informations that the keel has an effects on hydrodynamic forces and resistance differences between the upwind and the downwind condition. Also this paper is associated with the state-of-the-art of calculating sailing yacht performance as this is performed in velocity prediction program (VPP). The VPP results shows a typical shape of a sailing yacht and the designed yacht has the best performance at 120 degree angle of true wind with 20 knots.

  • PDF

Development and Empirical Validation of an Electric Vehicle Battery Consumption Analysis Model (전기차 배터리 소모량 분석모형 개발 및 실증)

  • In-Seon Suh;Young-Mi Lee;Sang-Yul Oh;Myeong-Chang Gwak;Hyeon-Ji Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.523-532
    • /
    • 2024
  • In popular tourist destinations such as Jeju and Gangwon, electric rental cars are increasingly adopted. However, sudden battery drain due to weather conditions can pose safety issues. To address this, we developed a battery consumption analysis model that considers resistive energy factors such as acceleration, rolling resistance, and aerodynamic drag. Focusing on the effects of ambient temperature and wind speed, the model's performance was evaluated during an empirical validation period from November to December 2023. Comparing predicted and actual state of charge (SoC) across different routes identified ambient temperature, wind speed, and driving time as major sources of error. The mean absolute error (MAE) increased with lower temperatures due to reduced battery efficiency. Higher wind speeds on routes 1 and 6 resulted in larger errors, indicating the model's limitation in considering only tailwinds for aerodynamic drag calculations. Additionally, longer driving times led to higher actual SoC than predicted, suggesting the need to account for varying driver habits influenced by road conditions. Our model, providing more accurate SoC predictions to prevent battery depletion incidents, shows high potential for application in navigation apps for electric vehicle users in tourist areas. Future research should endeavor to the model by including wind direction, HVAC system usage, and braking frequency to improve prediction accuracy further.

Refined damage prediction of low-rise building envelope under high wind load

  • Pan, F.;Cai, C.S.;Zhang, W.;Kong, B.
    • Wind and Structures
    • /
    • v.18 no.6
    • /
    • pp.669-691
    • /
    • 2014
  • Since low-rise residential buildings are the most common and vulnerable structures in coastal areas, a reliable prediction of their performance under hurricanes is necessary. The present study focuses on developing a refined finite element model that is able to more rigorously represent the load distributions or redistributions when the building behaves as a unit or any portion is overloaded. A typical 5:12 sloped low-rise residential building is chosen as the prototype and analyzed under wind pressures measured in the wind tunnel. The structural connections, including the frame-to-frame connections and sheathing-to-frame connections, are modeled extensively to represent the critical structural details that secure the load paths for the entire building system as well as the boundary conditions provided to the building envelope. The nail withdrawal, the excessive displacement of sheathing, the nail head pull-through, the sheathing in-plane shear, and the nail load-slip are found to be responsible for the building envelope damage. The uses of the nail type with a high withdrawal capacity, a thicker sheathing panel, and an optimized nail edge distance are observed to efficiently enhance the building envelope performance based on the present numerical damage predictions.

Fast Simulation of Wind Waves along the Korean Coast Induced by Typhoon Nabi, 2005 (태풍 나비에 의한 한국 연안 태풍파의 신속 모의)

  • Lee, Jung-Lyul;Lim, Heung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.567-573
    • /
    • 2006
  • An efficient typhoon wave-generating model is applied to northeast Asia sea zone presented that can be used by civil defense agencies for real-time prediction and fast warnings on typhoon-generated wind wave and storm surge. Instead of using commercialized wave models such as WAM, SWAN, the wind waves are simulated by using a new concept of wavelength modulation to enhance broader application of the hyperbolic wave model of the mild-slope equation type. The results simulated along the Korean coasts during Typhoon Nabi (2005) showed reasonable agreement with the recorded wind waves.

  • PDF