• Title/Summary/Keyword: Wind prediction

Search Result 932, Processing Time 0.025 seconds

Financial Distress Prediction Models for Wind Energy SMEs

  • Oh, Nak-Kyo
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.75-82
    • /
    • 2014
  • The purpose of this paper was to identify suitable variables for financial distress prediction models and to compare the accuracy of MDA and LA for early warning signals for wind energy companies in Korea. The research methods, discriminant analysis and logit analysis have been widely used. The data set consisted of 15 wind energy SMEs in KOSDAQ with financial statements in 2012 from KIS-Value. We found that five financial ratio variables were statistically significant and the accuracy of MDA was 86%, while that of LA is 100%. The importance of this study is that it demonstrates empirically that financial distress prediction models are applicable to the wind energy industry in Korea as an early warning signs of impending bankruptcy.

An empirical model for amplitude prediction on VIV-galloping instability of rectangular cylinders

  • Niu, Huawei;Zhou, Shuai;Chen, Zhengqing;Hua, Xugang
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.85-103
    • /
    • 2015
  • Aerodynamic forces of vortex-induced vibration and galloping are going to be coupled when their onset velocities are close to each other, which will induce the cross-wind amplitudes of the structures increased continuously with ever-increasing wind velocities. The main purpose of the present work is going to propose an empirical formula to predict the response amplitude of VIV-galloping interaction. Firstly, two typical mathematical models for the coupled oscillations, i.e., Tamura & Shimada model and Parkinson & Corless model are comparatively summarized. Then, the key parameter affecting response amplitude is determined through comparative numerical simulations with Tamura & Shimada model. For rectangular cylinders with the side ratio from 0.5 to 2.5, which are actually prone to develop the VIV and galloping induced interaction responses, an empirical amplitude prediction formula is proposed after regression analysis on comprehensively collected experimental data with the predetermined key parameter.

Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure

  • Jiang, Lei;Li, Chunxiang;Li, Jinhua
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2020
  • Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.

Low Level Wind Shear Characteristics and Predictability at the Jeju International Airport (제주국제공항 저층급변풍 발생 특성 및 예측 성능)

  • Geun-Hoi Kim;Hee-Wook Choi;Jae-Hyeok Seok;Sang-Sam Lee;Yong Hee Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.3
    • /
    • pp.50-58
    • /
    • 2023
  • Sudden wind changes at low altitudes pose a significant threat to aircraft operations. In particular, airports located in regions with complex terrain are susceptible to frequent abrupt wind variations, affecting aircraft takeoff and landing. To mitigate these risks, Low Level Wind shear Alert System (LLWAS) have been implemented at airports. This study focuses on understanding the characteristics of wind shear and developing a prediction model for Jeju International Airport, which experiences frequent wind shear due to the influence of Halla Mountain and its surrounding terrain. Using two years of LLWAS data, the study examines the occurrence patterns of wind shear at Jeju International Airport. Additionally, high-resolution numerical model is utilized to produce forecasted information on wind shear. Furthermore, a comparison is made between the predicted wind shear and LLWAS observation data to assess the prediction performance. The results demonstrate that the prediction model shows high accuracy in predicting wind shear caused by southerly winds.

A Simple Ensemble Prediction System for Wind Power Forecasting - Evaluation by Typhoon Bolaven Case - (풍력예보를 위한 단순 앙상블예측시스템 - 태풍 볼라벤 사례를 통한 평가 -)

  • Kim, Jin-Young;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Ji-Young;Lee, Jun-Shin
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2016
  • A simple but practical Ensemble Prediction System(EPS) for wind power forecasting was developed and evaluated using the measurement of the offshore meteorological tower, HeMOSU-1(Herald of Meteorological and Oceanographic Special Unite-1) installed at the Southwest Offshore in South Korea. The EPS developed by the Korea Institute of Energy Research is based on a simple ensemble mean of two Numerical Weather Prediction(NWP) models, WRF-NMM and WRF-ARW. In addition, the Kalman Filter is applied for real-time quality improvement of wind ensembles. All forecasts with EPS were analyzed in comparison with the HeMOSU-1 measurements at 97 m above sea level during Typhoon Bolaven episode in August 2012. The results indicate that EPS was in the best agreement with the in-situ measurement regarding (peak) wind speed and cut-out speed incidence. The RMSE of wind speed was 1.44 m/s while the incidence time lag of cut-out wind speed was 0 hour, which means that the EPS properly predicted a development and its movement. The duration of cut-out wind speed period by the EPS was also acceptable. This study is anticipated to provide a useful quantitative guide and information for a large-scale offshore wind farm operation in the decision making of wind turbine control especially during a typhoon episode.

Prediction of Annual Energy Production of Wind Farms in Complex Terrain using MERRA Reanalysis Data (MERRA 재해석 자료를 이용한 복잡지형 내 풍력발전단지 연간에너지발전량 예측)

  • Kim, Jin-Han;Kwon, Il-Han;Park, Ung-Sik;Yoo, Neungsoo;Paek, Insu
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.82-90
    • /
    • 2014
  • The MERRA reanalysis data provided online by NASA was applied to predict the annual energy productions of two largest wind farms in Korea. The two wind farms, Gangwon wind farm and Yeongyang wind farm, are located on complex terrain. For the prediction, a commercial CFD program, WindSim, was used. The annual energy productions of the two wind farms were obtained for three separate years of MERRA data from June 2007 to May 2012, and the results were compared with the measured values listed in the CDM reports of the two wind farms. As the result, the prediction errors of six comparisons were within 9 percent when the availabilities of the wind farms were assumed to be 100 percent. Although further investigations are necessary, the MERRA reanalysis data seem useful tentatively to predict adjacent wind resources when measurement data are not available.

Prediction of Annual Energy Production of Gangwon Wind Farm using AWS Wind Data (AWS 풍황데이터를 이용한 강원풍력발전단지 연간에너지발전량 예측)

  • Woo, Jae-kyoon;Kim, Hyeon-Gi;Kim, Byeong-Min;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.72-81
    • /
    • 2011
  • The wind data obtained from an AWS(Automated Weather Station) was used to predict the AEP(annual energy production) of Gangwon wind farm having a total capacity of 98 MWin Korea. A wind energy prediction program based on the Reynolds averaged Navier-Stokes equation was used. Predictions were made for three consecutive years starting from 2007 and the results were compared with the actual AEPs presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from the prediction program were close to the actual AEPs and the errors were within 7.8%.

Prediction of Wind Power Generation using Deep Learnning (딥러닝을 이용한 풍력 발전량 예측)

  • Choi, Jeong-Gon;Choi, Hyo-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.329-338
    • /
    • 2021
  • This study predicts the amount of wind power generation for rational operation plan of wind power generation and capacity calculation of ESS. For forecasting, we present a method of predicting wind power generation by combining a physical approach and a statistical approach. The factors of wind power generation are analyzed and variables are selected. By collecting historical data of the selected variables, the amount of wind power generation is predicted using deep learning. The model used is a hybrid model that combines a bidirectional long short term memory (LSTM) and a convolution neural network (CNN) algorithm. To compare the prediction performance, this model is compared with the model and the error which consist of the MLP(:Multi Layer Perceptron) algorithm, The results is presented to evaluate the prediction performance.

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

Extrapolation of wind pressure for low-rise buildings at different scales using few-shot learning

  • Yanmo Weng;Stephanie G. Paal
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.367-377
    • /
    • 2023
  • This study proposes a few-shot learning model for extrapolating the wind pressure of scaled experiments to full-scale measurements. The proposed ML model can use scaled experimental data and a few full-scale tests to accurately predict the remaining full-scale data points (for new specimens). This model focuses on extrapolating the prediction to different scales while existing approaches are not capable of accurately extrapolating from scaled data to full-scale data in the wind engineering domain. Also, the scaling issue observed in wind tunnel tests can be partially resolved via the proposed approach. The proposed model obtained a low mean-squared error and a high coefficient of determination for the mean and standard deviation wind pressure coefficients of the full-scale dataset. A parametric study is carried out to investigate the influence of the number of selected shots. This technique is the first of its kind as it is the first time an ML model has been used in the wind engineering field to deal with extrapolation in wind performance prediction. With the advantages of the few-shot learning model, physical wind tunnel experiments can be reduced to a great extent. The few-shot learning model yields a robust, efficient, and accurate alternative to extrapolating the prediction performance of structures from various model scales to full-scale.