• 제목/요약/키워드: Wind power prediction

검색결과 174건 처리시간 0.023초

회귀분석을 활용한 옥외 절연물의 오손도 예측 (A Prediction on the Pollution Level of Outdoor Insulator with Regression Analysis)

  • 최남호;구경완;한상옥
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권3호
    • /
    • pp.137-143
    • /
    • 2003
  • The degree of contamination on outdoor insulator is ons of the most importance factor to determine the pollution level of outdoor insulation, and the sea salt is known as the most dangerous pollutant. As shown through the preceding study, the generation of salt pollutant and the pollution degree of outdoor insulator have a close relation with meteorological conditions, such as wind velocity, wind direction, precipitation and so fourth. So, in this paper, we made an investigation on the prediction method, a statistical estimation technique for equivalent salt deposit density of outdoor insulator with multiple linear regression analysis. From the results of the analysis, we proved the superiority of the prediction method in which the variables had a very close(about 0.9) correlation coefficient. And the results could be applied to establish the Pollution Prediction System for power utilities, and the system could provide an invaluable information for the design and maintenance of outdoor insulation system.

A New Battery Approach to Wind Generation System in Frequency Control Market

  • Nguyen, Minh Y.;Nguyen, Dinh Hung;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.667-674
    • /
    • 2013
  • Wind power producers face many regulation costs in deregulated environment, which remarkably lowers the value of wind power in comparison with conventional sources. One of these costs is associated with the real-time variation of power output and being paid in frequency control market according to the variation band. This paper presents a new approach to coordination of battery energy storage in wind generation system for reducing the payment in frequency control market. The approach depends on the statistic data of wind generation and the prediction of frequency control market price to determine the optimal variation band which is then kept by the real-time charging and discharging of batteries, ultimately the minimum cost of frequency regulation can be obtained. The optimization problem is formulated as trade-off between the decrease in the regulation payment and the increase in the cost of using battery, and vice versus. The approach is applied to a study case and the results of simulation show its effectiveness.

온도와 풍속에 따른 태양광발전 효율 실증분석 연구 (A Study on Solar Power Generation Efficiency Empirical Analysis according to Temperature and Wind speed)

  • 차왕철;박정호;조욱래;김재철
    • 전기학회논문지P
    • /
    • 제64권1호
    • /
    • pp.1-6
    • /
    • 2015
  • Factors that have influence on solar power generation are specified into three aspects such as meteorological, geographical factors as well as equipment installation. Meteorological factors influence the most among the three. Insolation, sunshine hours, and cloud directly influence on solar power generation, whereas temperature and wind speed have impacts on equipment installation. This paper provides explanation over temperature-wind speed equation by calculating influence of temperature and wind speed on equipment installation. In order to conduct a research, pyranometer, anemometer, air thermometer, module thermometer are installed in 2MWp solar power plant located in South Cholla province, so that real-time meteorological data and generating amount can be analyzed through monitoring system. Besides, if existing and new methods are applied together, accuracy of prediction for generating amount is improved.

임의 풍향에 있는 수평축 풍력터빈의 성능예측 (Performance Prediction of the Horizontal Axis wind Turbine in Arbitrary Wind Direction)

  • 유능수
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.255-265
    • /
    • 1996
  • Up to the present the study on the performance prediction of HAWT was performed mainly by assuming the axial flow. So in this paper we aimed at the fully non-axial flow of HAWT. For this purpose, we defined the wind turbine pitch angle in addition to the yaw angle to specify the arbitrary wind direction. And we adopted the Glauert method as the basic analysis method then modified this method suitably for our goal. By comparing the computational results obtained by this modified new Glauert method with the experimental results, it was proved that our method was a very efficient method. And on the basis of the reliability of this method we considered the effect of all the design parameters and presented the optimum blade geometry and the optimum operating condition to gain the best performance curve.

Short-Term Wind Speed Forecast Based on Least Squares Support Vector Machine

  • Wang, Yanling;Zhou, Xing;Liang, Likai;Zhang, Mingjun;Zhang, Qiang;Niu, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1385-1397
    • /
    • 2018
  • There are many factors that affect the wind speed. In addition, the randomness of wind speed also leads to low prediction accuracy for wind speed. According to this situation, this paper constructs the short-time forecasting model based on the least squares support vector machines (LSSVM) to forecast the wind speed. The basis of the model used in this paper is support vector regression (SVR), which is used to calculate the regression relationships between the historical data and forecasting data of wind speed. In order to improve the forecast precision, historical data is clustered by cluster analysis so that the historical data whose changing trend is similar with the forecasting data can be filtered out. The filtered historical data is used as the training samples for SVR and the parameters would be optimized by particle swarm optimization (PSO). The forecasting model is tested by actual data and the forecast precision is more accurate than the industry standards. The results prove the feasibility and reliability of the model.

유동해석을 통한 수직축 풍력발전 터빈의 성능 예측 (Performance Prediction of Wind Power Turbine by CFD Analysis)

  • 김종호;김종봉;오영록
    • 대한기계학회논문집B
    • /
    • 제37권4호
    • /
    • pp.423-429
    • /
    • 2013
  • 수직축 풍력발전기의 발전 전력을 유동해석을 이용하여 예측하였다. 해석은 블레이드 회전 속도를 고정하고 그 회전 속도에서 토크를 반력으로 추출하였다. 여러 경우의 블레이드의 회전 속도에 대해 토크를 구하고 발전 용량을 계산하였다. 회전 속도에 따른 발전 토크와 발전 용량을 계산함으로써 최적의 발전기와 그 때의 회전 속도를 선정할 수 있었다. 또한, 블레이드의 개수와 블레이드의 형상에 대해 해석을 수행하여 그 영향을 분석하였다. 마지막으로 실험을 수행하여 그 결과를 비교하였다.

한반도 풍력 자원 지도의 공간 해상도가 풍력자원 예측 정확도에 미치는 영향에 관한 수치연구 (Numerical Study on the Impact of the Spatial Resolution of Wind Map in the Korean Peninsula on the Accuracy of Wind Energy Resources Estimation)

  • 이순환;이화운;김동혁;김민정;김현구
    • 한국환경과학회지
    • /
    • 제18권8호
    • /
    • pp.885-897
    • /
    • 2009
  • In order to make sure the impact of spatial resolution of wind energy map on the estimation of wind power density in the Korean Peninsula, the comparison studies on the characteristics of wind energy map with three different spatial resolutions were carried out. Numerical model used in the establishment of wind map is MM5 (5th generation Mesoscale Model) with RBAPS (Regional Data Assimilation and Prediction System) as initial and boundary data. Analyzed Period are four months (March, August, October, and December), which are representative of four seasons. Since high spatial resolution of wind map make the undulation of topography be clear, wind pattern in high resolution wind map is correspond well with topography pattern and maximum value of wind speed is also increase. Indication of island and mountains in wind energy map depends on the its spatial resolution, so wind patterns in Heuksan island and Jiri mountains are clearly different in high and low resolutions. And area averaged power density can be changed by estimation method of wind speed for unit area in the numerical model and by treatment of air density. Therefore the studiable resolution for the topography should be evaluated and set before the estimation of wind resources in the Korean Peninsula.

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

풍력자원 평가를 위한 한반도 수치바람모의 (Numerical Simulation to Evaluate Wind Resource of Korea)

  • 이화운;김동혁;김민정;이순환;박순영;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.300-302
    • /
    • 2008
  • For the evaluation of wind resources, numerical simulation was carried out as a tool for establishing wind map around the korean peninsula. Initial and boundary condition are given by 3 hourly RDAPS(Regional Data Assimilation and Prediction System) data of KMA(Korea Meteorology Administration) and high resolution terrain elevation land cover(30 seconds) data from USGS(United States Geological Survey). Furthermore, Data assimilation was adopted to improve initial meteorological data with buoy and QuikSCAT seawinds data. The simulation was performed from 2003 to 2006 year. To understand wind data correctly in complex terrain as the korean peninsula, at this research, Wind map was classified 4 categories by distance from coastline and elevation.

  • PDF

Fatigue wind load spectrum construction based on integration of turbulent wind model and measured data for long-span metal roof

  • Liman Yang;Cong Ye;Xu Yang;Xueyao Yang;Jian-ge Kou
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.121-131
    • /
    • 2023
  • Aiming at the problem that fatigue characteristics of metal roof rely on local physical tests and lacks the cyclic load sequence matching with regional climate, this paper proposed a method of constructing the fatigue load spectrum based on integration of wind load model, measured data of long-span metal roof and climate statistical data. According to the turbulence characteristics of wind, the wind load model is established from the aspects of turbulence intensity, power spectral density and wind pressure coefficient. Considering the influence of roof configuration on wind pressure distribution, the parameters are modified through fusing the measured data with least squares method to approximate the actual wind pressure load of the roof system. Furthermore, with regards to the wind climate characteristics of building location, Weibull model is adopted to analyze the regional meteorological data to obtain the probability density distribution of wind velocity used for calculating wind load, so as to establish the cyclic wind load sequence with the attributes of regional climate and building configuration. Finally, taking a workshop's metal roof as an example, the wind load spectrum is constructed according to this method, and the fatigue simulation and residual life prediction are implemented based on the experimental data. The forecasting result is lightly higher than the design standards, consistent with general principles of its conservative safety design scale, which shows that the presented method is validated for the fatigue characteristics study and health assessment of metal roof.