• 제목/요약/키워드: Wind power limit

검색결과 69건 처리시간 0.025초

Evaluation of the Wind Power Penetration Limit and Wind Energy Penetration in the Mongolian Central Power System

  • Ulam-Orgil, Ch.;Lee, Hye-Won;Kang, Yong-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.852-858
    • /
    • 2012
  • This paper describes evaluation results of the wind power penetration limit (WPPL) and the wind energy penetration (WEP) in the Mongolian central power system (MCPS). A wind power plant (WPP) in a power system possesses an output power limit because the power system must maintain a balance between the generation and consumption of electricity at all times in order to achieve an adequate level of quality. The instantaneous penetration limit (IPL) of wind generation at a load is determined as the minimum of the three technical constraints: the minimum output, the ramp rate capability, and the spinning reserve of the conventional generating units. In this paper, a WPPL is defined as the maximum IPL divided by the peak load. A maximal variation rate (VR) of wind power is a major factor in determining the IPL, WPPL, and WEP. This paper analyzes the effects of the maximal VR of wind power on the WPPL, WEP, and capacity factor (CF) in the MCPS. The results indicate that a small VR can facilitate a large amount of wind energy while maintaining a high CF with increased wind power penetration.

에너지저장장치를 이용한 제주지역 풍력발전 한계용량 증대효과 분석 (Increasing Effect Analysis of the Wind Power Limit Using Energy Storage System in Jeju-Korea)

  • 김영환;김세호
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.81-90
    • /
    • 2014
  • The Jeju-Korea power system is a small-sized network with a system demand ranging from a autumn minimum of 350MW to a summer peak of 716MW. Because Jeju island is well exposed to north-east winds with high speed, applications to connect to Jeju power system are flooded. Considering physical/environmental constraints, Jeju Self-governing Province has also target for the wind power capacity of 1,350MW by 2020. It amounts to two or three times of Jeju average-demand power and wind power limit capacity announced by Korea Power Exchange (KPX) company. Wind farm connection agreements will be signed to maximize utilization of wind resource. In spite of submarine cable HVDC connected to Korea mainland, Jeju power system is independently operated by frequency and reserve control. This study reevaluates wind power limit based on the KPX criteria from 2016 to 2020. First of all wind power generation limit are affected by off-peak demand in Jeju power system. Also the possibility capacity rate of charging wind power output is evaluated by using energy storage system (ESS). As a result, in case of using 110MWh ESS, wind power limit increases 33~55MW(30~50% of ESS), wind power constraint energy decreases from 68,539MWh to 50,301MWh and wind farm capacity factor increases from 25.9 to 26.1% in 2020.

풍력발전기 출력제한을 고려한 풍력한계용량 산정에 관한 연구 (A study on the maximum penetration limit of wind power considering output limit of WTGs)

  • 김형택;명호산;김세호
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.23-31
    • /
    • 2011
  • The wind energy is one of the most prospective resources in renewable energy. However, the WTGS shouldn't be installed indiscriminately because the power system can be negatively influenced by a variable and uncertain nature of the wind energy. It is the reason why it has to be limited to install the WTGS thoughtlessly mentioned above that support the importance of the maximum penetration limit of wind power. It may required that power system operators suggests a new way of power system operation as percentage of the WTGS increase in the existing power system. The wind power is fixed in a limited area, so using rate of the wind power will be increased by installing additional WTGS. In this paper, we have studied on economic evaluation of the wind capacity increased by restricting the output of the WTGS as the way to increase the wind capacity.

전압형 HVDC에 의한 제주계통의 풍력한계용량 증대 방안 (An Strategy of Increasing the Wind Power Penetration Limit with VSC-HVDC in Jeju Power System)

  • 이승민;채상헌;김호민;김일환
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.461-462
    • /
    • 2015
  • The government on Jeju Special Self-governing Province has a policy named 'Carbon Free Island Jeju by 2030'. The main purpose in this policy is to install wind power system with the total capacity of 1.35 GW by 2020. When the demand load on Jeju Island power system is lower than entire output power, a lot of dump power will be produced from the large-scale wind farms. It will be able to cause the wind power limit on Jeju Island. Consequently, the additional power facility must be installed to ensure stable power system operation in Jeju Island and increase wind power limit. From this point, this paper proposes the installation of MMC-HVDC, which can supply power in real time in the desired direction. The effectiveness of MMC-HVDC based on measured data of Jeju Island power system will be verified by using PSCAD/EMTDC simulation program.

  • PDF

풍력발전 한계운전용량에 대한 계통영향 분석 (Analysis of effect on power system considering the maximum penetration limit of wind power)

  • 명호산;김봉언;김형택;김세호
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.19-25
    • /
    • 2012
  • About supply and demand to see that you need to match, the limitations of wind power capacity is low demand and the commitment of the general generator will exist between the minimum generation. if the turbine's output can be controlled, The limitation of wind power capacity will be adopted based on instant power generation. Namely, The minimum limits of wind power generation based load operation by calculating the amount that is higher than if the output should be restricted to highest operation. in this paper, we committed to the demand for low enough that the combination of the general generator of wind power capacity to accommodate the operation of determining whether the limit is intended to. For this, power system analysis program PSS/E was used, Jeju system by implementing the model simulations were performed.

해상풍력 파일 굴착직경 결정을 위한 하부구조물 설계해석 (Design Analysis of Substructure for Offshore Wind Pile Excavation)

  • 이기옥;선민영
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.48-55
    • /
    • 2019
  • With recent rapid increases in the power generation capacity of offshore wind power generators, reliable structural analysis of the large-scale infrastructure needed to install wind power generators at sea is required. Therefore, technology for heavy marine equipment such as barges and excavation equipment is needed. Under submarine conditions, rock drilling technology to install the substructure for offshore wind pile excavation is a very important factor in supporting a wind farm safely under dynamic loads over periods of at least 20 years. After investigating the marine environment and on-site ground excavation for the Saemangeum offshore wind farm, in this study we suggest.

풍력발전의 전력계통 동적 수용한계 산정 및 BESS 적용방안 분석 (Study on Calculation of Dynamic Penetration Limit of WTG and Applications of BESS in Power Systems)

  • Gwon, Han Na;Choi, Woo Yeong;Kook, Kyugn Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.29-32
    • /
    • 2015
  • 풍력발전기와 같은 신재생에너지원은 기존 동기화력발전기의 특성과 매우 다르기 때문에, 상정고장과 같은 가혹한 상황에서는 주파수 변동에 신속히 대응하지 못하므로 주파응답성능을 저하시킬 수 밖에 없다. 특히, 풍력발전의 수용률이 높은 상황에서 상정고장이 발생한 경우, 전력계통에 안정화를 위해서 풍력발전의 수용이 더욱 제한될 가능성이 잠재되어 있다. 이를 위해, 본 논문에서는 풍력발전의 전력계통 동적 수용한계를 산정하는 절차를 구현하고, 산출된 결과로부터 풍력발전의 동적 수용한계를 증대시키기 위한 BESS의 적용방안을 모색하였다.

속도 오버슈트 발생 시 제한 속도를 초과하지 않는 실속형 블레이드 풍력터빈의 속도제어기 설계 (Design of Speed Controller for Stall Blade Wind Turbine Complying with the Speed Limit During Speed Overshoot)

  • 김예찬;송승호
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.438-445
    • /
    • 2022
  • Blade efficiency decreases when the rotor speed is kept constant even though the wind speed is higher than the rated value. Therefore, a speed controller is used to regulate the rotor speed in the high-wind-speed region. In stall-blade wind turbine, the role of the speed controller is important because precise aerodynamic regulation is unavailable. In this study, an effective parameter design method of a PI speed controller is proposed to limit the speed overshoot of a type 4 wind turbine with stall blades even though wind gust occurs. The proposed method considers the efficiency characteristics of the stall blade and the mechanical inertia of the wind turbine rotor. It determines the bandwidth of the speed controller to comply with the speed limit during generator speed overshoot for the worst case of wind gust. The proposed method is verified through intensive simulations with a MATLAB/SIMULINK model and experimental results obtained using a 3 kW MG set of wind turbine simulator.

전압형 MMC-HVDC에 의한 제주계통의 풍력한계용량 증대 방안 (A Strategy of Increasing the Wind Power Penetration Limit with VSC Type MMC-HVDC in Jeju Power System)

  • 이승민;김일환;김호민;채상헌;왓나우덩
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.550-557
    • /
    • 2015
  • The Jeju Special Self-Governing Province is currently promoting the "Carbon-free Island by 2030" policy, which requires the use of renewable energy instead of fossil fuel so that the island will have no carbon gases generated by 2030. To implement this policy, the island plans to build a wind power plant capacity of 1.09 GW in 2020; this wind power plant is currently ongoing. However, when wind power output is greater than the power demand of the island, the stability of Jeju Island power system must be prepared for it because it can be a problem. Therefore, this study proposes a voltage source-type MMC-HVDC system linked to mainland Korea to expand the wind power penetration limits of Jeju Island under the stable operation of the Jeju Island power system. To verify the effectiveness of the proposed scheme, computer simulations using the PSCAD/EMTDC program are conducted, and the results are demonstrated. The scenarios of the computer simulation consist of two cases. First, the MMC-HVDC system is operated under variable wind power in the Jeju Island power system. Second, it is operated under the predicted Jeju Island power system in 2020.

A New Solution for Stochastic Optimal Power Flow: Combining Limit Relaxation with Iterative Learning Control

  • Gong, Jinxia;Xie, Da;Jiang, Chuanwen;Zhang, Yanchi
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.80-89
    • /
    • 2014
  • A stochastic optimal power flow (S-OPF) model considering uncertainties of load and wind power is developed based on chance constrained programming (CCP). The difficulties in solving the model are the nonlinearity and probabilistic constraints. In this paper, a limit relaxation approach and an iterative learning control (ILC) method are implemented to solve the S-OPF model indirectly. The limit relaxation approach narrows the solution space by introducing regulatory factors, according to the relationship between the constraint equations and the optimization variables. The regulatory factors are designed by ILC method to ensure the optimality of final solution under a predefined confidence level. The optimization algorithm for S-OPF is completed based on the combination of limit relaxation and ILC and tested on the IEEE 14-bus system.