• Title/Summary/Keyword: Wind power generator blade

Search Result 74, Processing Time 0.026 seconds

Development of PSCAD Simulation Model for Doubly-fed Induction-type Wind Power Generation System (이중여자 유도형 풍력 발전기의 PSCAD 시뮬레이션 모델 개발)

  • Jeong, Byoung-Chang;Kim, Hee-Jung;Chung, Yong-Ho;Jeon, Young-Soo;Kwak, No-Hong;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.261-264
    • /
    • 2006
  • In this paper, doubly-fed induction-type wind power generation system simulation model for grid connection is developed. The simulation model is based on PSCAD/EMTDC and consists of rotor-blade, blade controller, generator power converter and generator controller Blade controller controls the blade pitch angle for starting, peak power limiting and emergency condition. Generator controller controls the generator output power to maximize the system efficiency. Simulation results are shown for the variable wind speed conditions. The simulation model can be utilized for study of actual interaction between wind turbine and grid for reliable operation and protection of power system.

  • PDF

A Study on Reliability Validation by Infrared Thermography of Composite Material Blade for Wind Turbine Generator (풍력발전용 복합소재 블레이드의 적외선 열화상 검사를 이용한 신뢰성 검증)

  • Kang, Byung Kwon;Nam, Mun Ho;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.176-181
    • /
    • 2014
  • In these days, new and renewable energy is getting popular around globe and wind power generator is one of the renewable energy. In this study, we conducted a study on defect detection of composite material blade for wind power generator by applying active infrared thermography and produced a defect test piece by applying composite material used for blade of wind power generator. An infrared thermal camera and 2 kW halogen lamp are used for the purpose of research as equipments. Also, we analyzed temperature characteristic by using infrared thermal camera after checking a heat source on a test piece and found effectiveness of infrared thermography to blade of wind power generator by detecting defects resulting from temperature difference of a test piece, which eventually improve the safety and reliability of the composite material blade.

Great capacity Generator of Wind Turbine (대용량 출력 풍력발전기 설계)

  • Hur, Man-Cheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.366-368
    • /
    • 2007
  • Mr. Hur has developed the 7500KW permanent magnet synchronous generator. The 7500KW generator has dual blade system with vertical axis type generation module. The 7500KW generator will generating that it is too expensive and construction payment. The advantages of dual blade system are cheap in generation with better efficiency, and safety compact structure. But also this system has the expensive slide ring for to distribute electrical power.

  • PDF

A Study on Development of Wind Power 400W Generation System with Vertical axis Type (400W 수직형 풍력발전시스템의 개발에 관한 연구)

  • Yoon, Jeong-Phil;Choi, Jang-Kyun;Cha, In-Su
    • New & Renewable Energy
    • /
    • v.2 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • Need developments of substitute energy to solve problem of global warming by excess use of fossil energy, excess discharge of carbon dioxide. wind power generation system is all-important energy in next generation as clean energy. Environmental pollution of wind power generation system is not exhausted entirely. And, electric-power generation system cost is cheap than other energy. Wind Generation system that is supplied much present is most horizontality style blade structure. But, Horizontal style structure is serious noise and there is problem in stability of blade. We designed special blade solve to this problem. And, manufactured vertical axis wind power generation system because using blade. Also, developed assistance power generator to increase driving efficiency ago wind power generation. We expect this devices that is such cover shortcoming of wind power generation system.

  • PDF

Mechanical Design of a 750 kW Direct-drive Wind Turbine Generator System (750kW급 풍력터빈발전기의 기계설계)

  • Sohn, Y. U.;Son, J. B.;Park, I. S.;Kim, Y. C.;Kim, K. R.;Chung, C. W.;Chun, Ch. H.;Ryu, J. Y.;Park, J, I.;Byun, C. J,;Kim, D. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.379-384
    • /
    • 2004
  • A prototype of 750 kW direct-drive wind turbine generator system, KBP-750D is under development in Korea. For the gearless, direct-drive prototype a synchronous generator with permanent magnets has been developed. The upwind 3-blade type machine employs variable speed and pitch control. The operating ranges of wind and rotor speed are 3 to 25 m/s and 9 to 25 rpm, respectively. The tip speed ratio of rotor blade is 7.5, designed for power coefficient 0.47, The blade pitch and torque are controlled with the predefined torque-speed curve according to the conditions of wind and public electric grid. This paper describes the outlines of primary components of KBP-750D.

  • PDF

Development of Hardware Simulator for PMSG Wind Power System (영구자석동기발전기 풍력시스템의 하드웨어 시뮬레이터 개발)

  • Lee, Doo-Young;Yun, Dong-Jin;Jeong, Jong-Kyou;Yang, Seung-Chul;Han, Byung-Moon;Song, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.951-958
    • /
    • 2008
  • This paper describes development of hardware simulator for the PMSG wind power system, which was designed considering wind characteristic, blade characteristic and blade inertia compensation. The simulator consists of three major parts, such as wind turbine model using induction motor, PMSG generator, converter-inverter set. and control system. The turbine simulator generates torque and speed signals for a specific wind turbine with respect to given wind speed. This torque and speed signals are scaled down to fit the input of 2kW PMSG. The PMSG-side converter operates to track the maximum power point, and the grid-side inverter controls the active and reactive power supplied to the grid. The operational feasibility was verified by computer simulations with PSCAD/EMTDC, and the implementation feasibility was confirmed through experimental works with a hardware set-up.

Maximum Power Control of Small Direct-Drive Wind Power Generator (소형 직접구동형 풍력발전기의 최대 출력제어)

  • Kim Chul-Ho;Lee Woo-Seok;Seo Young-Taek;Oh Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.875-877
    • /
    • 2004
  • Research related to renewable energy is urgently required to cope with the depletion of fossil fuel and the environmental pollution. This paper deals with maximum power control of 1kW rating wind power generator. To implement direct-drive generator, axial flux permanent magnet generator is adopted to test the converter. The blade is attached to the surface of outer rotor disk. Generally wind power generator is operated under the rated wind speed. To capture maximum power at my given wind speed, the coordination of generator and converter is essential. Buck/Boost converter is designed to charge 24V battery and under the low wind speed it operates as boost converter.

  • PDF

A Study on Simulation-based Optimization for Wind Turbine Controller Tuning (시뮬레이션 기반의 풍력발전제어시스템 최적화 기법에 관한 연구)

  • Jeon, Gyeong-Eon;No, Tae-Soo;Kim, Guk-Seon;Kim, Ji-Yon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.503-510
    • /
    • 2011
  • This paper presents a method of optimizing the blade pitch and generator torque controllers which have been already designed for an existing wind turbine generator system. Since the highly nonlinear and uncertain characteristics of the wind turbine generator can not be fully considered in the controller design phase, some parameters such as control gains must be tuned during the field implementation phase. In this paper, nonlinear simulation software, which is based high fidelity wind turbine model, and optimization technique are effectively combined and used to tune a set of gains for the blade pitch and the generator torque controllers. Simulation results show that the baseline controllers can be effectively optimized to reduce the errors in wind turbine rotor speed and generator power output controls as well as twisting of the high and low speed shafts.

Aerodynamic Analysis and System Implementation of Vertical Axis Wind Turbine using Individual Blade Pitch Control Method (개별 블레이드 피치 제어 방식을 이용한 수직축 풍력발전기의 성능 해석 및 시스템 구현)

  • Jeong, In-Oh;Lee, Yun-Han;Hwang, In-Seong;Kim, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3347-3352
    • /
    • 2007
  • This paper describes a research for the performance improvement of the straight-bladed vertical axis wind turbine. To improve the performance of VAWT, the individual blade pitch control method is adopted. For the wind turbine, CFD analysis is carried out by changing blade pitch angle according to the change of wind speed and wind direction. By this method, capacity and power efficiency of VAWT are obtained according to the wind speed and rotating of rotor, and could predict the overall performance of VAWT. It was manufactured to verify performance of the experimental system that consists of rotor including four blades and base. Furthermore, torque sensor and power generator were installed. Also, active controller which can change the pitch angle of the individual blade according to the wind speed and direction was used.

  • PDF

A Numerical Study on Solidity Characteristics of the Cross-flow Power Turbine(CPT) (횡류형 파워 터빈(CPT)에서 솔리디티 영향에 관한 수치해석 연구)

  • Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.562-566
    • /
    • 2010
  • Wind energy is one of the most general natural resources in the world. However, as of today, generating electricity out of wind energy is only available from big wind generator, Furthermore, an axial-flow turbine is the only way to produce electricity in the big wind generator. This paper is for the guidance of drawing impact fact about power turbine using cross-flow type transferring wind energy to electricity energy. It will find the ideal value which enables to make cross-flow power turbine(CPT) using computational fluid dynamics(CFD) code. This study tries to analyze the "Solidity" characteristics. We can find out turbine-blade number through CFD. CFD is using "Fluent_ver 6.3.16", and the data from its result will judge fan-blade performance through specific torque and specific power from each "Solidity" model. Based upon the above, we will make cross-flow power turbine of multi-blade centrifugal fan instead of axial-flow type.