• 제목/요약/키워드: Wind modeling

Search Result 740, Processing Time 0.028 seconds

Evaluation algorithm for Hosting Capacity of PV System using LDC Method of Step Voltage Regulator in Distribution Systems (배전계통에 있어서 선로전압조정장치의 LDC방식에 의한 태양광전원의 수용성 향상 평가알고리즘)

  • Lee, Se-Yeon;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.20-28
    • /
    • 2020
  • According to the 3020 RE (renewable energy) policy of the Korean Government, distributed generators, including PV (photovoltaic) and WP (wind power) systems, have been installed and operated in distribution systems. On the other hand, if large-scale PV systems are interconnected in a distribution system, the spread of PV systems may be postponed due to a reduction of the hosting capacity in PV systems because of the over-voltage phenomena at the customer end by violating the allowable voltage limits. Under these circumstances, this paper proposes an evaluation algorithm of the hosting capacity of a PV system based on the LDC (line drop compensation) method of SVR (step voltage regulator) to improve the hosting capacity when large-scale PV systems are installed in a distribution system. Moreover, this paper presents a modeling of a complex distribution system, which is composed of a large-scale PV system and SVR with the LDC method using PSCAD/EMTDC. The simulation results confirmed that the proposed algorithm and modeling are useful and practical tools for improving the hosting capacity of a PV system because the customer voltages are maintained within the allowable voltage limits even if 6.5[MW] of the PV system is installed in a distribution system with the LDC method of SVR.

A Calculation Method of in vivo Energy Consumption in Estimation of Harvesting Date for High Potato Solids (고 고형분함량 감자의 수확시기 예측모형을 위한 식물체내 에너지 소모량 추정)

  • Jung, Jae-Youn;Suh, Sang-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • A simulation modeling for predicting the harvesting date with high potato solids consists of development of mathematical models. The mathematical model on potato growth and its development should be obtained by using agricultural elements which analyze relations of solar radiation quantity, temperature, photon quantity, carbon dioxide exchange rate, water stress and loss, relative humidity, light intensity, and wind etc. But more reliable way to predict harvesting date against climatic change employs in vivo energy consumption for growth and induction shape in a slight environmental adaptation. Therefore, to calculate in vivo energy loss, we take a concept of estimate of the amount of basal metabolism in each tuber on the basis of $Wm={\int}^m_tf(x)dt$ and $Tp=\frac{Tm{\cdot}Wm^{Tp}}{Wm^{Tm}}$. In the validation experiments, results of measuring solid accumulation of potato harvested at simulated date agreed fairly well with the actual measured values in each regional field during the growth period of 2005-2009. The calculation method could be used to predict an appropriate harvesting date for a production of high potato solids according to weather conditions.

The Methodology for Prediction and Control of Hazardous Chlorine Gas Flow Releases as Meteorological Data (기상조건에 따른 유해독성염소가스의 가상흐름누출에 관한 예측 및 제어론)

  • Kim, Jong-Shik;Park, Jong-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1155-1160
    • /
    • 1999
  • The screening methodology modeling, dispersion modeling procedures for continuous and instantaneous releases of the gas phase flow from the storage tank and pressure relief valve were considered. This study was performed to develop the screening methodology for prediction and control of hazardous/toxic gas releases by estimating the 1-hr average maximum ground-level concentration of $Cl_2$ gas vs. downwind distance by incorporating source term model including the general/physical properties of released material and release mode of the $Cl_2$ storage tank of the chemical plant facilities, dispersion model, and meteorological/topographical data into the TSCREEN model. As the results of the study, it was found that dispersion modes of the dense gas were affected by the state of the released material, the released conditions, physical-chemical properties of released material, and the released modes (continuous and instantaneous releases), and especially largely affected by initial (depressurized) density of the released material and release emission rate as well as the wind velocity. Especially, this study was considered to release hazardous material as meteorological data. It was thought that this screening methodology can be useful as a preliminary guideline for application of the refined analysis model by developing the generic sliding scale methodology for various senarios selected.

  • PDF

Study on Improving the Navigational Safety Evaluation Methodology based on Autonomous Operation Technology (자율운항기술 기반의 선박 통항 안전성 평가 방법론 개선 연구)

  • Jun-Mo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.74-81
    • /
    • 2024
  • In the near future, autonomous ships, ships controlled by shore remote control centers, and ships operated by navigators will coexist and operate the sea together. In the advent of this situation, a method is required to evaluate the safety of the maritime traffic environment. Therefore, in this study, a plan to evaluate the safety of navigation through ship control simulation was proposed in a maritime environment, where ships directly controlled by navigators and autonomous ships coexisted, using autonomous operation technology. Own ship was designed to have autonomous operational functions by learning the MMG model based on the six-DOF motion with the PPO algorithm, an in-depth reinforcement learning technique. The target ship constructed maritime traffic modeling data based on the maritime traffic data of the sea area to be evaluated and designed autonomous operational functions to be implemented in a simulation space. A numerical model was established by collecting date on tide, wave, current, and wind from the maritime meteorological database. A maritime meteorology model was created based on this and designed to reproduce maritime meteorology on the simulator. Finally, the safety evaluation proposed a system that enabled the risk of collision through vessel traffic flow simulation in ship control simulation while maintaining the existing evaluation method.

Estimation of Source Apportionment for Semi-Continuous PM2.5 and Identification of Location for Local Point Sources at the St. Louis Supersite, USA (미국 St. Louis Supersite에서의 준 실시간 PM2.5에 대한 기여도 추정 및 지역 규모 오염원의 위치 파악)

  • Hwang, In-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.154-166
    • /
    • 2009
  • In this study, 1-hour integrated $PM_{2.5}$ mass and chemical composition concentrations were monitored at the St. Louis-Midwest Supersite in Illinois. Time-resolved samples were collected one week in each of June 2001 (22 June to 28 June), November 2001 (7 November to 13 November), and March 2002 (19 March to 25 March). A total of 427 samples were collected by CAMM (continuous ambient mass monitor) and 15 compounds were analyzed by AAS, PILS (particle-into-liquid sampler), and TOT (thermal optical transmittance) method. PMF was applied to identify the sources and apportion the $PM_{2.5}$ mass to each source for highly time resolved data. In addition, the nonparametric regression (NPR) was applied to identify the predominant directions of local sources relative to wind direction. Also, this study performed compare the NPR analysis and location of actual local point sources at the St. Louis area. The PMF modeling identified nine sources and the average mass was apportioned to gasoline vehicle, road dust, zinc smelter, copper production, secondary sulfate, diesel emission, secondary nitrate, iron+steel, and lead smelter, respectively. These results suggested that this study results will be help for $PM_{2.5}$ source apportionment studies at similar metropolitan area, establish $PM_{2.5}$ standard, and establish effective emissions reduction strategies in Korea.

Modeling of Ocean Circulation in the Neighboring Seas of Korean Peninsula from Global Ocean Circulation Model (전구 해수순환 수치모형에 의한 한반도 주변의 순환 모사)

  • Choi Bung Ho;Choi Young Jin;Kim Cheol Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.241-257
    • /
    • 2004
  • Global prognostic models based on NCOM(NCAR CSM Ocean Model) of NCAR which is generic from Bryan-Cox-Semtner model are established to study the ocean circulation in the neighboring seas of Korean peninsula. The model domain covers areas from $80.6{^\circ}S~88.6{^\circ}N$in meridional direction and the vertical water column is divided into 15 levels taking enhanced grid resolution of $0.3^\circ$ around Korean peninsula. Island option is used for 22 islands to simulate inshore circulation by hole-relaxation method and the restart hydrographic data are taken from NCAR(1998) CSM model that has been run for 300 years. The wind stress data are taken from Choi et al. (2002). Based on the model results, circulation patterns in the NW Pacific and global oceans are investigated. Volume transports calculated at five straits in the neighboring seas of Korean peninsula are compared with the results from Choi et al. (2002) and other observed data.

Transmission Line Based Plucked String Model (전송선로 기반 탄현 모델)

  • Lee, Jingeol;French, Mark
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.361-368
    • /
    • 2013
  • As one way to describe the behavior of a vibrating string, analogies to a transmission line have been made based on the fact that they have oppositely travelling waves on each of them. In such analogies, a rigid end to the string has been represented as an open circuit, and the displacement of the string as the current on the transmission line. However it turns out that the rigid end corresponds to a short circuit, the displacement to the voltage by the theory of the transmission line, and it is confirmed by experiments with circuit simulations. Based on these discoveries, a transmission line based plucked string model comprising a transmission line, two piecewise linear current sources, and switches is proposed. The proposed model is validated by showing that the voltage at the arbitrarily chosen location, and the voltage calculated over an infinitesimal portion at the end of the transmission line are consistent with the displacement at the corresponding location and the force on the rigid end of the string from the well known difference form of a wave equation governing the behavior of the string with its fundamental frequency tuned to that for the proposed model, respectively. Moreover, the applicability of the proposed model to modeling string and wind instruments is presented.

Evaluation of the Moment Bearing Capacity of Offshore Bucket Platforms in Sand (사질토 지반에 설치된 해상 버켓작업대의 모멘트 지지력 산정)

  • Vicent, Ssenyondo;Gu, Kyo-Young;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.101-109
    • /
    • 2019
  • The bucket platform is a new structure suitable for construction of offshore bridge foundations and providing the temporary support for equipments and labour. The platform can be subjected to moment loading due to the eccentric loading or the horizontal load by wave and wind. Therefore, a three dimensional finite element analysis was performed to evaluate the moment bearing capacity of the bucket platform, varying soil density, the diameter and embedment depth of the bucket. The numerical modeling was verified and compared with the moment-rotation curve from a field loading test. The uniform sandy ground was assumed and the moment load was applied at the top plate of the platform, increasing bucket rotation. The moment-rotation relations were analyzed to determine the moment capacity, which was influenced by the embedment depth and diameter of the bucket. Finally, a preliminary design equation was suggested to estimate the moment bearing capacity.

A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams

  • Meradjah, Mustapha;Bouakkaz, Khaled;Zaoui, Fatima Zohra;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.269-282
    • /
    • 2018
  • In this paper, a new displacement field based on quasi-3D hybrid-type higher order shear deformation theory is developed to analyze the static and dynamic response of exponential (E), power-law (P) and sigmoïd (S) functionally graded beams. Novelty of this theory is that involve just three unknowns with including stretching effect, as opposed to four or even greater numbers in other shear and normal deformation theories. It also accounts for a parabolic distribution of the transverse shear stresses across the thickness, and satisfies the zero traction boundary conditions at beams surfaces without introducing a shear correction factor. The beam governing equations and boundary conditions are determined by employing the Hamilton's principle. Navier-type analytical solutions of bending and free vibration analysis are provided for simply supported beams subjected to uniform distribution loads. The effect of the sigmoid, exponent and power-law volume fraction, the thickness stretching and the material length scale parameter on the deflection, stresses and natural frequencies are discussed in tabular and graphical forms. The obtained results are compared with previously published results to verify the performance of this theory. It was clearly shown that this theory is not only accurate and efficient but almost comparable to other higher order shear deformation theories that contain more number of unknowns.

Numerical Simulation of Atmospheric Flow Fields Using Surface Observational Data in the Complex Coastal Regions (복잡한 해안지역에서의 지상 관측 자료를 이용한 대기 유동장 수치모의)

  • Lee, Hwa-Woon;Won, Hye-Young;Choi, Hyun-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.633-645
    • /
    • 2004
  • A critical component of air pollution modeling is the representation of meteorological fields within a model domain, since an accurate air quality simulation requires an accurate portrayal of the three-dimensional wind fields. The present study investigated data assimilation using surface observational data in the complex coastal regions to simulate an accurate meteorological fields. Surface observational data were categorized into three groups(Near coastal region, Far coastal regiln 1, Far costal region 2) by the locations where the data are. Experiments were designed and MM5 was used in each case of regions. Case 1 is an experiment without data assimilation, Case N is executed with data assimilation using observational data by meteorological stations and AWS data located in the near coastal region, within 1 km. Case F1 is also an experiment with data assimilation using observational data by meteorological stations and AWS data located in the far coastal regiln 1, more than 1km and less than 5km from the coastal lines. Case F2 is appled to data assimilation using observational data by meteorological stations and AWS data located in the far coastal region 2, beyond 5km from the coastal lines. The result of this study indicated that data assimilation using data in the far coastal region 1 and 2 provided an attractive method for generating accurate meteorological fields, especially in the complex coastal regions.