• Title/Summary/Keyword: Wind lidar

Search Result 38, Processing Time 0.03 seconds

Characteristics Analysis and Reliability Verification of Nacelle Lidar Measurements (나셀 라이다 측정 데이터 특성 분석 및 신뢰성 검증)

  • Shin, Dongheon;Ko, Kyungnam;Kang, Minsang
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.1-11
    • /
    • 2017
  • A study on Nacelle Lidar (Light detection and ranging) measurement error and the data reliability verification was carried out at Haengwon wind farm on Jeju Island. For measurement data error processing, the characteristics of Nacelle Lidar measurements were analyzed by dividing into three parts, which are weather conditions (temperature, humidity, atmosphere, amount of precipitation), mechanical movement (rotation of wind turbine blades, tilt variation of Nacelle Lidar) and Nacelle Lidar data availability. After processing the measurement error, the reliability of Nacelle Lidar data was assessed by comparing with wind data by an anemometer on a met mast, which is located at a distance of 200m from the wind turbine with Nacelle Lidar. As a result, various weather conditions and mechanical movement did not disturb reliable data measurement. Nacelle Lidar data with availability of 95% or more could be used for checking Nacelle Lidar wind data reliability. The reliability of Nacelle Lidar data was very high with regression coefficient of 98% and coefficient of determination of 97%.

Performance of Continuous-wave Coherent Doppler Lidar for Wind Measurement

  • Jiang, Shan;Sun, Dongsong;Han, Yuli;Han, Fei;Zhou, Anran;Zheng, Jun
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.466-472
    • /
    • 2019
  • A system for continuous-wave coherent Doppler lidar (CW lidar), made up of all-fiber structures and a coaxial transmission telescope, was set up for wind measurement in Hefei (31.84 N, 117.27 E), Anhui province of China. The lidar uses a fiber laser as a light source at a wavelength of $1.55{\mu}m$, and focuses the laser beam on a location 80 m away from the telescope. Using the CW lidar, radial wind measurement was carried out. Subsequently, the spectra of the atmospheric backscattered signal were analyzed. We tested the noise and obtained the lower limit of wind velocity as 0.721 m/s, through the Rayleigh criterion. According to the number of Doppler peaks in the radial wind spectrum, a classification retrieval algorithm (CRA) combining a Gaussian fitting algorithm and a spectral centroid algorithm is designed to estimate wind velocity. Compared to calibrated pulsed coherent wind lidar, the correlation coefficient for the wind velocity is 0.979, with a standard deviation of 0.103 m/s. The results show that CW lidar offers satisfactory performance and the potential for application in wind measurement.

LIDAR Analysis Program of Wind Resource Measurement KIER-$ShadeFree^{TM}$ (풍력자원조사 라이다 분석 프로그램 KIER-$LidarWind^{TM}$)

  • Kim, Hyun-Goo;Jeong, Tae-Yoon;Jang, Moon-Seok;Jeon, Wan-Ho;Yoon, Seong-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.190.2-190.2
    • /
    • 2010
  • LIDAR는 레이저를 대기에 송출하여 미세먼지의 이동에 의한 도플러 위상차를 검출함으로써 3차원 풍속벡터를 측정하는 원격탐사 장비로, 한국에너지기술연구원은 국내최초로 WindCube LIDAR를 도입하여 운영 중에 있다. LIDAR의 장점은 이동성, 설치의 편리성 외에도 현재까지 풍황탑이 모든 범위를 측정하지 못한 풍력발전기 블레이드 회전면 최고 높이인 지면 150m 까지의 풍속분포를 상세하게 측정할 수 있다는 특장점이 있다. WindCube LIDAR는 총 10개의 측정 고도를 설정할 수 있으며 1Hz로 원시자료를 획득하여 10분 평균자료로 저장한다. 이러한 측정자료를 통하여 기존 기상탑에서 불가능하였던 풍속분포의 정확한 이해와 난류특성의 파악이 가능하게 되었으나 반대급부로 급증한 측정자료의 정리와 분석에 많은 시간과 노력이 필요하게 되었다. 이에 한국에너지기술연구원에서는 LIDAR 측정자료의 가공 및 분석에 편리성을 제공하기 위해 KIER-$LidarWind^{TM}$ 프로그램을 개발하였으며, 2차원 등치선도 및 3차원 풍속분포 그래프를 시각함으로써 입체적인 가공 및 분석이 가능하도록 하였다.

  • PDF

Nacelle-Mounted Lidar Beam Line of Sight (LOS) Wind Speed Calibration Procedure Using Meteorological Mast (기상탑을 이용한 나셀 거치형 라이다 빔의 LOS(Line of Sight) 풍속 교정절차)

  • Ryu, Dong-Hun;Lee, Min-Soo;Lim, Chae-Wook;Ko, Kyung-Nam;Shin, Dong-Heon;Kang, Bo-Sin;Kim, Dong-Wan
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.24-31
    • /
    • 2018
  • Wind lidar application is increasing and its calibration method is required to use wind lidar as an alternative to the meteorological mast. A nacelle lidar calibration method is now being discussed in IEC 61400-50-3 (Wind energy generation systems - Part 50-3: Use of nacelle-mounted lidars for wind measurements), and the method is mainly based on the wind lidar beam line of sight (LOS) wind speed calibration suggested by DTU as DTU E-0020 (Calibrating Nacelle Lidars). In this paper, a LOS wind speed calibration method is introduced and a calibration example performed on Jeju island is presented. The results showed a slope of 1.011 and R2 of 0.997, which means that the LOS wind speed is highly correlated with the reference wind speed and is comparable. But LOS wind speed calibration requires a very long time due to its principle and environmental conditions, and a calibration method that can overcome this problem of uncontrollable environments needs to be developed.

Wind speed measurement using SODAR and LIDAR (SODAR와 LIDAR를 이용한 풍속 측정)

  • Ji, Young-Mi;Kim, Hyun-Goo;Chung, Chin-Hwa;Han, Kyung-Seop;Park, Hyun-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.453-455
    • /
    • 2009
  • The wind speed measurement is performed using SODAR and LIDAR to evaluate availability of remote sensing in assessment of wind resource. The intercomparison comprises time series, correlation analysis and recovery rate. It shows that LIDAR is more effective than using SODAR to measure wind speed in ambient disturbance.

  • PDF

Investigation of possibility for Urban Wind Power Using Surface-based Remote Sensing Instruments (원격탐사장비를 이용한 도시형 풍력발전 가능성 검토)

  • Kim, Dong-Hyuk;Lee, Hwa-Woon;Kim, Hyun-Goo;Kim, Min-Jung;Park, Soon-Young;Lee, Soon-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.501-504
    • /
    • 2009
  • In order to investigate of possibility for developing urban wind power, wind profile and wind power density are estimated using Sodar and Lidar based on surface. Since poor performance of Sodar and Lidar are often shown in a paticular meteorological condition, inter-comparison and validation with radio-sonde for each of instruments are performed. As a result, Lidar shows a good performance and wind data from Lidar are used to analyze wind profile and wind power density. It can be found that a wind power system mounted tall building in urban area is very attractive.

  • PDF

A Comparison of Offshore Met-mast and Lidar Wind Measurements at Various Heights (해상기상탑과 윈드 라이다의 높이별 풍황관측자료 비교)

  • Kim, Ji Young;Kim, Min Suek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.12-19
    • /
    • 2017
  • There is a need to substitute offshore met-mast with remote sensing equipment such as wind lidar since the initial installation and O&M costs for offshore met-mast are quite high. In this study, applicability of wind lidar is verified by intercomparison test of wind speed and direction data from offshore met-mast and wind lidar for simultaneous operational period. Results at various heights show no statistical difference in trend and size and data from wind lidar is found to be more accurate and have less error than data from offshore met-mast where error from structural shading effect is significant.

Comparative Validation of WindCube LIDAR and Remtech SODAR for Wind Resource Assessment - Remote Sensing Campaign at Pohang Accelerator Laboratory (풍력자원평가용 윈드큐브 라이다와 렘텍 소다의 비교.검증 - 포항가속기 원격탐사 캠페인)

  • Kim, Hyun-Goo;Chyng, Chin-Wha;An, Hae-Joon;Ji, Yeong-Mi
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • The remote-sensng campaign was performed at the Pohang Accelerator Laboratory where is located in a basin 6km inland from Yeongil Bay. The campaign aimed uncertainty assessment of Remtech PA0 SODAR through a mutual comparison with WindCube LIDAR, the remote-sensing equipment for wind resource assessment. The joint observation was carried out by changing the setup for measurement heights three times over two months. The LIDAR measurement was assumed as the reference and the uncertainty of SODAR measurement was quantitatively assessed. Compared with LIDAR, the data availability of SODAR was about half. The wind speed measurement was fitted to a slope of 0.94 and $R^2$ of 0.79 to the LIDAR measurement. However, the relative standard deviation was about 17% under 150m above ground level. Therefore, the Remtech PA0 SODAR is judged to be unsuitable for the evaluation of wind resource assessment and wind turbine performance test, which require accuracy of measurement.

Doppler LIDAR Measurement of Wind in the Stratosphere

  • Dong, Jihui;Cha, Hyun-Ki;Kim, Duk-Hyeon;Baik, Sung-Hoon;Wang, Guocheng;Tang, Lei;Shu, Zhifeng;Xu, Wenjing;Hu, Dongdong;Sun, Dongsong
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.199-203
    • /
    • 2010
  • A mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the stratosphere has been developed in Hefei, China. First, the principle of wind measurement with direct detection Doppler LIDAR is presented. Then the configuration of the LIDAR system is described. Finally, the primary experimental results are provided and analyzed. The results indicate that the detection range of the designed Doppler LIDAR reached 50 km altitude, and there is good consistency between the molecular Doppler wind LIDAR(DWL) and the wind profile radar(WPR) in the low troposphere.

Comparative Validation of WindCube LIDAR and Scintec SODAR for Wind Resource Assessment - Remote Sensing Campaign at Jamsil (풍력자원평가용 윈드큐브 라이다와 씬텍 소다의 비교.검증 - 잠실 원격탐사 캠페인)

  • Kim, Hyun-Goo;Kim, Dong-Hyuk;Jeon, Wan-Ho;Choi, Hyun-Jeong
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2011
  • The only practical way to measure wind resource at high-altitude over 100 m above ground for a feasibility study on a high-rise building integrated wind turbine might be ground-based remote sensing. The remote-sensing campaign was performed at a 145 m-building roof in Jamsil where is a center of metropolitan city Seoul. The campaign aimed uncertainty assessment of Leosphere WindCube LIDAR and Scintec MPAS SODAR through a mutual comparison. Compared with LIDAR, the data availability of SODAR was about 2/3 at 550 m altitude while both showed over 90% under 400 m, and it is shown that the data availability decrease may bring a distortion of statistical analysis. The wind speed measurement of SODAR was fitted to a slope of 0.92 and $R^2$ of 0.90 to the LIDAR measurement. The relative standard deviation of wind speed difference and standard deviation of wind direction difference were evaluated to be 30% and 20 degrees, respectively over the whole measurement heights.