• 제목/요약/키워드: Wind heating

검색결과 163건 처리시간 0.028초

아크히터 내부의 난류 효과에 대한 고찰 (Investigation of Turbulent Flow Effect in Segmented Arc Heater)

  • 이정일;김규홍;김종암
    • 한국항공우주학회지
    • /
    • 제33권5호
    • /
    • pp.1-8
    • /
    • 2005
  • 아크히터의 작동특성을 예측하고 아크히터 자체의 설계와 해석을 위해, 세그먼트 아크히터(segmented arc-heater)의 내부 유동을 계산하였다. 지금까지 몇몇 연구자들이 아크히터 내부 유동을 수학적으로 모델링하여 일부 아크히터의 내부 유동을 정확하게 계산하는데 성공하였지만, 다양한 아크히터의 여러 운용 조건을 모두 만족하는 수학적 모델을 완성하지 못했다. 본 연구에서는 수학적 모델링의 범용성 확보를 위해, 아크 히터 내부의 난류 유동에 중점을 두었다. 기존의 대수 난류 모델을 대신하여 세 개의 2방정식 난류를 사용하였으며, 계산 결과 $k-\varepsilon$ 난류 모델이 아크히터 내부의 유동을 모사하는데 적합하다는 것을 확인했으며, 난류가 아크히터 유동을 특성을 좌우하는 중요한 요소 중에 하나라는 것을 밝혔다.

생태계를 이용한 자원절약형 단지계획기법 개발에 관한 연구 - 주거단지를 중심으로- (A Study on development of Resourse - saving site Planning techniques based on utilization of Ecosystem - Focused on Housing site -)

  • 이영무
    • 한국조경학회지
    • /
    • 제18권2호
    • /
    • pp.111-125
    • /
    • 1990
  • Korea is a nation with poor natural resources. There is a greats need to save resources that are running out in fast face. The purpose of this thesis is to bind the means to save rosources in housing site, especially in highrise apartment. The reason why the high-rise apartments are chosen as a case is 7hat the high-rise is becoming the major form of dwelling in most urban areas. As a tool of saving the ecological way is chosen because ecological energy is free, clean and unlimited. The resources to be saved are divided into two categories, namely energy and non - energy resources as water, land and food. The contents of the thesis are comprised of 4 chapters. The early chaspters are devoted to the understanding of the ecosystem and problems of current energy consumption in the apartment. It is fellowed by the introduction of the hypothesis that can possibly save reouruces. The hypothesis are then transformed into the actual theories through verification, to be established as the new techniques of the site planning. The ecosystem is the functional relationship between the living organisms and their physical surroundings. The living organisms are the plants that produce, animals that consume and bacterias that decompose. They live in the environment which consists of the three worlds of atmosphere, hydrosphere and lithosphere. The whole system is activated by the solar energy that turns the inorganic mallet- into the living organism and back to the inorganic. It is the recycling principle of the ecosystem. The elements of ecosystem that fan be unilimited as the tools of resources -saving are the sun, wind, water, soil, plant and waste. They are unlimited sources of energy. free of pollution and cheap in price. Each of these ecological elements Provide the opportunities that can save the heating fuel, air conditioning energy, water resource, land and food. The ecological approch should be pursued actively in this age of short resources and growing pollution. In the scale of total energy consumption the housing takes the second position next to the industrial use. It is followed by the transportation which shows for less consumption than former two.

  • PDF

초지지붕에서의 시간경과에 따른 식생변화 (Changes in Plant Species on a Grass Roof over Time)

  • 이영무
    • 한국조경학회지
    • /
    • 제34권6호
    • /
    • pp.39-53
    • /
    • 2007
  • Unlike conventional roof landscaping, where various kinds of plants and structures are employed, a grass roof is a roof on which herbaceous plants are grown in planting medium and which is not accessed or maintained, mainly because it doesn't have sufficient load capacity to support a regular roof garden. They are mostly built on existing roofs, whether flat slab or gabled. Planting on roofs has numerous advantages, such as creating a biotope, purifying urban air, adding moisture to the atmosphere, storing rain water, preventing flash floods, reducing energy use for heating and air conditioning, enhancing the urban landscape and providing relaxation to the city dwellers, not to mention the alleviation of global warming by absorbing $CO_2$. In addition to the general merits of roof planting, the grass roof has its own unique qualities. Only herbaceous species are planted on the roof, resulting in light weight which allows roofs of existing buildings to be planted without structural reinforcement. The species chosen are mostly short, tough perennials that don't need to be maintained. These conditions provide an ideal situation where massive planting can be done in urban areas where roofs are often the only and definitely the largest space available to be planted. If roofs are planted on a massive scale they can play a significant role in alleviating global warming, heat island effects and energy shortages. Despite the advantages of grass roofs, there are some problems. The most significant problem is the invasion of neighboring plants. They may be brought in with the planting medium, by birds or by wind. These plants have little aesthetic value comparing to the chosen species and are usually taller. Eventually they dominate and prevail over the original species. The intended planting design disappears and the roof comes to look wild. Since the primary value of a grass roof is ecological, a change in attitude towards what constitutes beauty on the roofscape is necessary. Instead of keeping the roof neat through constant maintenance, people must learn that the wild grass with bird's nests on their roof is more beautiful as it is.

위성 자료가 재분석자료의 대규모 대기 순환장에 미치는 영향: JRA-55와 JRA-55C 비교 연구 (The Impact of Satellite Observations on Large-Scale Atmospheric Circulation in the Reanalysis Data: A Comparison Between JRA-55 and JRA-55C)

  • 박민규;최유성;손석우
    • 대기
    • /
    • 제26권4호
    • /
    • pp.523-540
    • /
    • 2016
  • The effects of satellite observations on large-scale atmospheric circulations in the reanalysis data are investigated by comparing the latest Japanese Meteorological Association's reanalysis data (JRA-55) and its family data, JRA-55 Conventional (JRA-55C). The latter is identical to the former except that satellite observations are excluded during the data assimilation process. Only conventional datasets are assimilated in JRA-55C. A simple comparison revealed a considerable difference in temperature and zonal wind fields in both the stratosphere and troposphere. Such differences are particularly large in the Southern Hemisphere and whole stratosphere where conventional ground-based measurements are limited. The effects of satellite observations on the zonal-mean tropospheric circulations are further examined in terms of the Hadley cell, eddy-driven jet, and mid-latitude storm tracks. In both hemispheres, JRA-55C exhibits slightly weaker and narrower Hadley cell than JRA-55. This is consistent with a weaker diabatic heating in JRA-55C. The eddy-driven jet shows a small difference in its latitudinal location only in the Southern Hemisphere. Likewise, while the Northern-Hemisphere storm tracks are quantitatively similar in the two datasets, Southern-Hemisphere storm tracks are relatively weaker in JRA-55C than in JRA-55. Their difference is comparable to the uncertainty between reanalysis datasets, indicating that satellite data assimilation could yield significant corrections in the zonal-mean circulation in the Southern Hemisphere.

Numerical Simulation of Extreme Air Pollution by Fine Particulate Matter in China in Winter 2013

  • Shimadera, Hikari;Hayami, Hiroshi;Ohara, Toshimasa;Morino, Yu;Takami, Akinori;Irei, Satoshi
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권1호
    • /
    • pp.25-34
    • /
    • 2014
  • In winter 2013, extreme air pollution by fine particulate matter ($PM_{2.5}$) in China attracted much public attention. In order to simulate the $PM_{2.5}$ pollution, the Community Multiscale Air Quality model driven by the Weather Research and Forecasting model was applied to East Asia in a period from 1 January 2013 to 5 February 2013. The model generally reproduced $PM_{2.5}$ concentration in China with emission data in the year 2006. Therefore, the extreme $PM_{2.5}$ pollution seems to be mainly attributed to meteorological (weak wind and stable) conditions rather than emission increases in the past several years. The model well simulated temporal and spatial variations in $PM_{2.5}$ concentrations in Japan as well as China, indicating that the model well captured characteristics of the $PM_{2.5}$ pollutions in both areas on the windward and leeward sides in East Asia in the study period. In addition, contribution rates of four anthropogenic emission sectors (power generation, industrial, residential and transportation) in China to $PM_{2.5}$ concentration were estimated by conducting zero-out emission sensitivity runs. Among the four sectors, the residential sector had the highest contribution to $PM_{2.5}$ concentration. Therefore, the extreme $PM_{2.5}$ pollution may be also attributed to large emissions from combustion for heating in cold regions in China.

기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구 (Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent)

  • 민태범;우영제;이한승
    • KIEAE Journal
    • /
    • 제10권3호
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

지속적인 거주를 위한 노인가구의 주거요구 특성에 관한 연구 (A Study on the Elderly Households' Housing Needs for Aging in Places)

  • 이광수;박수빈
    • 한국주거학회논문집
    • /
    • 제20권5호
    • /
    • pp.123-132
    • /
    • 2009
  • As society increasingly ages, maintaining an independent lifestyle at home becomes an important issue for older people. This study aims to determine old people's housing needs for maintaining an independent lifestyle despite their health status and living arrangements. A total of 438 residents voluntarily took part in a research questionnaire survey through the quota sampling method. The participants were grouped according to age (60-64, 65-69, 70-74, and over 75), gender (male and female), and house type (apartment houses and others). The results are as follows. (1) The senior residents are mostly within a non occupational, low income, and low subjective living status. (2) They are satisfied with their current residence and hope to manage the rest of their life in the same place. (3) Three out of five residents prefer the apartment housing type to other types of housing. The preferred dwelling size, number of rooms, and preference for use of an extra room all varied depending on gender and housing type as well as whether they were a couple or living alone. (4) The older residents have a higher need for a safety system than do the younger residents. Female residents pay more attention to convenience while male residents pay more attention to safety. The non-apartment residents require more modification to fundamental facilities such as a heating and ventilation system, wind protection, and additional storage than do the apartment residents. This study has thoroughly analyzed request characteristics according to basic qualities of the elderly households.

TOWARD NEXT GENERATION SOLAR CORONAGRAPH: DEVELOPMENT OF COMPACT DIAGNOSTIC CORONAGRAPH ON ISS

  • Cho, Kyungsuk;Bong, Suchan;Choi, Seonghwan;Yang, Heesu;Kim, Jihun;Baek, Jihye;Park, Jongyeob;Lim, Eun-Kyung;Kim, Rok-Soon;Kim, Sujin;Kim, Yeon-Han;Park, Young-Deuk;Clarke, S.W.;Davila, J.M.;Gopalswamy, N.;Nakariakov, V.M.;Li, B.;Pinto, R.F.
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.66.2-66.2
    • /
    • 2017
  • The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administrative (NASA) and install it on the International Space Station (ISS). The coronagraph is an externally occulted one stage coronagraph with a field of view from 2.5 to 15 solar radii. The observation wavelength is approximately 400 nm where strong Fraunhofer absorption lines from the photosphere are scattered by coronal electrons. Photometric filter observation around this band enables the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with the high time cadence (< 12 min) of corona images to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in 2017 August for the filter system and to perform a stratospheric balloon experiment in 2019 for the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g. coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.

  • PDF

석유 팬 히터의 연소실 주변 열전달 특성 (Heat transfer characteristics around a circular combustion chamber of kerosene fan heater)

  • 김장권
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.551-561
    • /
    • 1998
  • This paper was studied to understand the characteristics of heat transfer coefficients and surface temperature distributions around a circular combustion chamber within the heat-intercept duct of kerosene fan heater. The experiment was carried out in the heat-intercept duct of kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of 240 mm * 240 mm * 1200 mm. The purpose of this paper was to obtain the basic data related with normal combustion for new design from conventional kerosene fan heater, and to investigate the effect of surface temperature, local and mean heat transfer coefficients versus flow-rate of convection axial fan according to the variations of heat release conditions from kerosene fan heater during normal combustion. Consequently it was found that (i) the revolution of convection axial fan during combustion had a smaller value than that of non-combustion because of the thermal resistance due to the high temperature in the heat-intercept duct, (ii) the pressure ratio P$_{2}$/P$_{1}$ had a comparatively constant value of 0.844 according to the revolution increase of turbo fan and the heating performance of kerosene fan heater had a range of 1,494 ~ 3,852 kcal/hr, (iii) the local heat transfer coefficient around a circular combustion chamber had a comparatively larger scale in the range of 315 deg. < .theta. < 45 deg. than that in the range of 90 deg. < .theta. < 270 deg. as a result of heat transfer difference between front and back of a circular combustion chamber, and (iv) the mean heat transfer coefficient around a circular combustion chamber increased linearly like a H$_{m}$=95.196Q+104.019 in condition of high heat release according to the increase of flow-rate of axial fan.n.

영천지역 민가의 공간구성과 변화과정에 관한 연구 (A Study on the Process of Variety and Spatial Composition of the Folk Houses in Yeongcheon Province)

  • 김찬영
    • 한국주거학회논문집
    • /
    • 제24권1호
    • /
    • pp.21-31
    • /
    • 2013
  • This study focuses on the regional characteristics observed in the composition and floor plan of folk houses in the Young-cheon region situated in the Southern East inland of Gyungsangbukdo. According to the typical characteristics of the Korean folk house, Young-cheon region is supposed to be classified as the Young-Nam region. Our study shows that the open inverse 'ㄱ' type composition is the most common among others, which consists the living room, UtChae and one BoosokChae that serves as a living room and a farm shop. The typical floor plan is called 'Young Nam type' 'H$\hat{o}$tjib' composed of four rooms. Young Nam type of house has a wall in front of the room floor with a door to make the space with the room floor as the internal space. This can be explained by the climatic conditions in the Southern region of Gyungsangbukdo, which has a very cold winter and has a harsh spring wind in Young-cheon. The structural feature to which we should pay attention is the Young Nam type house has a gambrel roof. The evolutions of the house in the 70s are observed in the roof during the Saemaeul Movement from a hut to a modernized roof. In the 80s, the replacement of the heating system, expansion of rooms, modernization of kitchen, replacement of paper windows, modernization of roof, and construction of amenities had taken place to change the space, construction and structure following the modern house features.