• Title/Summary/Keyword: Wind field model

Search Result 628, Processing Time 0.027 seconds

A hybrid numerical simulation method for typhoon wind field over complex terrain

  • Huang, Wenfeng;Zhou, Huanlin
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.549-566
    • /
    • 2014
  • In spite of progress in the numerical simulation of typhoon wind field in atmospheric boundary layer (ABL), using typhoon wind field model in conjunction with Monte Carlo simulation method can only accurately evaluate typhoon wind field over a general terrain. This method is not enough for a reliable evaluation of typhoon wind field over the actual complex terrain with surface roughness and topography variations. To predict typhoon wind field over the actual complex terrain in ABL, a hybrid numerical simulation method combined typhoon simulation used the typhoon wind field model proposed by Meng et al. (1995) and CFD simulation in which the Reynolds averaged Navier-Stokes (RANS) equations and k-${\varepsilon}$ turbulence model are used. Typhoon wind filed during typhoon Dujuan and Imbudo are simulated using the hybrid numerical simulation method, and compared with the results predicted by the typhoon wind field model and the wind field measurement data collected by Fugro Geotechnical Services (FGS) in Hong Kong at the bridge site from the field monitoring system of wind turbulence parameters (FMS-WTP) to validate the feasibility and accuracy of the hybrid numerical simulation method. The comparison demonstrates that the hybrid numerical simulation method gives more accurate prediction to typhoon wind speed and direction, because the effect of topography is taken into account in the hybrid numerical simulation method.

Wind field simulation over complex terrain under different inflow wind directions

  • Huang, Wenfeng;Zhang, Xibin
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.239-253
    • /
    • 2019
  • Accurate numericalsimulation of wind field over complex terrain is an important prerequisite for wind resource assessment. In this study, numerical simulation of wind field over complex terrain was further carried out by taking the complex terrain around Siu Ho Wan station in Hong Kong as an example. By artificially expanding the original digital model data, Gambit and ICEM CFD software were used to create high-precision complex terrain model with high-quality meshing. The equilibrium atmospheric boundary layer simulation based on RANS turbulence model was carried out in a flat terrain domain, and the approximate inflow boundary conditions for the wind field simulation over complex terrain were established. Based on this, numerical simulations of wind field over complex terrain under different inflow wind directions were carried out. The numerical results were compared with the wind tunnel test and field measurement data for land and sea fetches. The results show that the numerical results are in good agreement with the wind tunnel data and the field measurement data which can verify the accuracy and reliability of the numerical simulation. The near ground wind field over complex terrain is complex and affected obviously by the terrain, and the wind field characteristics should be fully understood by numerical simulation when carrying out engineering application on it.

Comparison of tropical cyclone wind field models and their influence on estimated wind hazard

  • Gu, J.Y.;Sheng, C.;Hong, H.P.
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.321-334
    • /
    • 2020
  • Engineering type tropical cyclone (TC) wind field models are used to estimate TC wind hazard. Some of the models are well-calibrated using observation data, while others are not extensively compared and verified. They are all proxies to the real TC wind fields. The computational effort for their use differs. In the present study, a comparison of the predicted wind fields is presented by considering three commonly used models: the gradient wind field model, slab-resolving model, and a linear height-resolving model. These models essentially predict the horizontal wind speed at a different height. The gradient wind field model and linear height-resolving model are simple to use while the nonlinear slab-resolving model is more compute-intensive. A set of factors is estimated and recommended such that the estimated TC wind hazard by using these models becomes more consistent. The use of the models, including the developed set of factors, for estimating TC wind hazard over-water and over-land is presented by considering the historical tracks for a few sites. It is shown that the annual maximum TC wind speed can be adequately modelled by the generalized extreme value distribution.

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

Reconstruction of a near-surface tornado wind field from observed building damage

  • Luo, Jianjun;Liang, Daan;Weiss, Christopher
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.389-404
    • /
    • 2015
  • In this study, residential building damage states observed from a post-tornado damage survey in Joplin after a 2011 EF 5 tornado were used to reconstruct the near-surface wind field. It was based on well-studied relationships between Degrees of Damage (DOD) of building and wind speeds in the Enhanced Fujita (EF) scale. A total of 4,166 one- or two-family residences (FR12) located in the study area were selected and their DODs were recorded. Then, the wind speeds were estimated with the EF scale. The peak wind speed profile estimated from damage of buildings was used to fit a translating analytical vortex model. Agreement between simulated peak wind speeds and observed damages confirms the feasibility of using post-tornado damage surveys for reconstructing the near-surface wind field. In addition to peak wind speeds, the model can create the time history of wind speed and direction at any given point, offering opportunity to better understand tornado parameters and wind field structures. Future work could extend the method to tornadoes of different characteristics and therefore improve model's generalizability.

Numerical analysis of wind field induced by moving train on HSR bridge subjected to crosswind

  • Wang, Yujing;Xia, He;Guo, Weiwei;Zhang, Nan;Wang, Shaoqin
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.29-40
    • /
    • 2018
  • To investigate the characteristics of the combined wind field produced by the natural wind field and the train-induced wind field on the bridge, the aerodynamic models of train and bridge are established and the overset mesh technology is applied to simulate the movement of high-speed train. Based on ten study cases with various crosswind velocities of 0~20 m/s and train speeds of 200~350 km/h, the distributions of combined wind velocities at monitoring points around the train and the pressure on the car-body surface are analyzed. Meanwhile, the difference between the train-induced wind fields calculated by static train model and moving train model is compared. The results show that under non-crosswind condition, the train-induced wind velocity increases with the train speed while decreases with the distance to the train. Under the crosswind, the combined wind velocity is mainly controlled by the crosswind, and slightly increases with the train speed. In the combined wind field, the peak pressure zone on the headstock surface moves from the nose area to the windward side with the increase of wind velocity. The moving train model ismore applicable in analyzing the train induced wind field.

A Study on the Development of Wind and Wave Model of Typhoon

  • Jin Guo-Zhu;Song Chae-Uk;Seol Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.28 no.9
    • /
    • pp.815-820
    • /
    • 2004
  • In this paper, after analyzing other models with their advantages and disadvantages, we proposed a simple parametric model for calculating wind speed & direction and wave height & direction at any location around the typhoon at sea. The proposed wind-field model of typhoon is asymmetric, and consists of a circular symmetric wind-field caused by the pressure gradient of stationary typhoon and a moving wind-field caused by the movement of typhoon. By verifying this model through observed data, we found that it is accurate enough to develop the simulation software for training students and seafarers so as to take appropriate actions while being faced with the typhoon at sea.

Prediction of typhoon design wind speed and profile over complex terrain

  • Huang, W.F.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • The typhoon wind characteristics designing for buildings or bridges located in complex terrain and typhoon prone region normally cannot be achieved by the very often few field measurement data, or by physical simulation in wind tunnel. This study proposes a numerical simulation procedure for predicting directional typhoon design wind speeds and profiles for sites over complex terrain by integrating typhoon wind field model, Monte Carlo simulation technique, CFD simulation and artificial neural networks (ANN). The site of Stonecutters Bridge in Hong Kong is chosen as a case study to examine the feasibility of the proposed numerical simulation procedure. Directional typhoon wind fields on the upstream of complex terrain are first generated by using typhoon wind field model together with Monte Carlo simulation method. Then, ANN for predicting directional typhoon wind field at the site are trained using representative directional typhoon wind fields for upstream and these at the site obtained from CFD simulation. Finally, based on the trained ANN model, thousands of directional typhoon wind fields for the site can be generated, and the directional design wind speeds by using extreme wind speed analysis and the directional averaged mean wind profiles can be produced for the site. The case study demonstrated that the proposed procedure is feasible and applicable, and that the effects of complex terrain on design typhoon wind speeds and wind profiles are significant.

The influence of model surface roughness on wind loads of the RC chimney by comparing the full-scale measurements and wind tunnel simulations

  • Chen, Chern-Hwa;Chang, Cheng-Hsin;Lin, Yuh-Yi
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • A wind tunnel test of a scaled-down model and field measurement were effective methods for elucidating the aerodynamic behavior of a chimney under a wind load. Therefore, the relationship between the results of the wind tunnel test and the field measurement had to be determined. Accordingly, the set-up and testing method in the wind tunnel had to be modified from the field measurement to simulate the real behavior of a chimney under the wind flow with a larger Reynolds number. It enabled the results of the wind tunnel tests to be correlated with the field measurement. The model surface roughness and different turbulence intensity flows were added to the test. The simulated results of the wind tunnel test agreed with the full-scale measurements in the mean surface pressure distribution behavior.

Air Corridor Planning Strategy based on the Wind Field and Air Corridor Simulation - A Case Study of Pan-Gyo New Town Development Area - (바람통로 예측모델링을 통한 바람통로 계획전략 - 성남판교 신도시 개발지구를 중심으로 -)

  • 황기현;송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.5
    • /
    • pp.43-57
    • /
    • 2003
  • This paper presents the air corridor planning strategy based on simulation with MUKLMO_3 (Micro-scale Urban Climate Model) to investigate the wind field and air corridor caused by the land-use change of the New Town Development Area in Pan-Gyo. In the first part, the most frequently observed wind field in the New Town Development Area was measured and used as an initial value to simulate a more realistic wind field and air corridor. Several experiments with different initial values of wind fields were carried out to investigate the wind field change affected by the New Town Development. The results show the features of the wind field of the neutral stability condition in the urban canopy layer with a high resolution near the ground. The wind speed is weakened at this level due to the New Town Development. It was found that the wind field and air corridor are influenced by the land-use change. After the development of the New Town, the speed of the wind field decreased and the main wind directions and air corridor changed. In this study, this model is found to be a useful tool for evaluating air corridor and change of wind field in speed and direction.