• 제목/요약/키워드: Wind field

검색결과 1,608건 처리시간 0.036초

A hybrid numerical simulation method for typhoon wind field over complex terrain

  • Huang, Wenfeng;Zhou, Huanlin
    • Wind and Structures
    • /
    • 제18권5호
    • /
    • pp.549-566
    • /
    • 2014
  • In spite of progress in the numerical simulation of typhoon wind field in atmospheric boundary layer (ABL), using typhoon wind field model in conjunction with Monte Carlo simulation method can only accurately evaluate typhoon wind field over a general terrain. This method is not enough for a reliable evaluation of typhoon wind field over the actual complex terrain with surface roughness and topography variations. To predict typhoon wind field over the actual complex terrain in ABL, a hybrid numerical simulation method combined typhoon simulation used the typhoon wind field model proposed by Meng et al. (1995) and CFD simulation in which the Reynolds averaged Navier-Stokes (RANS) equations and k-${\varepsilon}$ turbulence model are used. Typhoon wind filed during typhoon Dujuan and Imbudo are simulated using the hybrid numerical simulation method, and compared with the results predicted by the typhoon wind field model and the wind field measurement data collected by Fugro Geotechnical Services (FGS) in Hong Kong at the bridge site from the field monitoring system of wind turbulence parameters (FMS-WTP) to validate the feasibility and accuracy of the hybrid numerical simulation method. The comparison demonstrates that the hybrid numerical simulation method gives more accurate prediction to typhoon wind speed and direction, because the effect of topography is taken into account in the hybrid numerical simulation method.

바람통로 예측모델링을 통한 바람통로 계획전략 - 성남판교 신도시 개발지구를 중심으로 - (Air Corridor Planning Strategy based on the Wind Field and Air Corridor Simulation - A Case Study of Pan-Gyo New Town Development Area -)

  • 황기현;송영배
    • 한국조경학회지
    • /
    • 제31권5호
    • /
    • pp.43-57
    • /
    • 2003
  • This paper presents the air corridor planning strategy based on simulation with MUKLMO_3 (Micro-scale Urban Climate Model) to investigate the wind field and air corridor caused by the land-use change of the New Town Development Area in Pan-Gyo. In the first part, the most frequently observed wind field in the New Town Development Area was measured and used as an initial value to simulate a more realistic wind field and air corridor. Several experiments with different initial values of wind fields were carried out to investigate the wind field change affected by the New Town Development. The results show the features of the wind field of the neutral stability condition in the urban canopy layer with a high resolution near the ground. The wind speed is weakened at this level due to the New Town Development. It was found that the wind field and air corridor are influenced by the land-use change. After the development of the New Town, the speed of the wind field decreased and the main wind directions and air corridor changed. In this study, this model is found to be a useful tool for evaluating air corridor and change of wind field in speed and direction.

Wind field simulation over complex terrain under different inflow wind directions

  • Huang, Wenfeng;Zhang, Xibin
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.239-253
    • /
    • 2019
  • Accurate numericalsimulation of wind field over complex terrain is an important prerequisite for wind resource assessment. In this study, numerical simulation of wind field over complex terrain was further carried out by taking the complex terrain around Siu Ho Wan station in Hong Kong as an example. By artificially expanding the original digital model data, Gambit and ICEM CFD software were used to create high-precision complex terrain model with high-quality meshing. The equilibrium atmospheric boundary layer simulation based on RANS turbulence model was carried out in a flat terrain domain, and the approximate inflow boundary conditions for the wind field simulation over complex terrain were established. Based on this, numerical simulations of wind field over complex terrain under different inflow wind directions were carried out. The numerical results were compared with the wind tunnel test and field measurement data for land and sea fetches. The results show that the numerical results are in good agreement with the wind tunnel data and the field measurement data which can verify the accuracy and reliability of the numerical simulation. The near ground wind field over complex terrain is complex and affected obviously by the terrain, and the wind field characteristics should be fully understood by numerical simulation when carrying out engineering application on it.

Numerical analysis of wind field induced by moving train on HSR bridge subjected to crosswind

  • Wang, Yujing;Xia, He;Guo, Weiwei;Zhang, Nan;Wang, Shaoqin
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.29-40
    • /
    • 2018
  • To investigate the characteristics of the combined wind field produced by the natural wind field and the train-induced wind field on the bridge, the aerodynamic models of train and bridge are established and the overset mesh technology is applied to simulate the movement of high-speed train. Based on ten study cases with various crosswind velocities of 0~20 m/s and train speeds of 200~350 km/h, the distributions of combined wind velocities at monitoring points around the train and the pressure on the car-body surface are analyzed. Meanwhile, the difference between the train-induced wind fields calculated by static train model and moving train model is compared. The results show that under non-crosswind condition, the train-induced wind velocity increases with the train speed while decreases with the distance to the train. Under the crosswind, the combined wind velocity is mainly controlled by the crosswind, and slightly increases with the train speed. In the combined wind field, the peak pressure zone on the headstock surface moves from the nose area to the windward side with the increase of wind velocity. The moving train model ismore applicable in analyzing the train induced wind field.

Field measurement and CFD simulation of wind pressures on rectangular attic

  • Peng, Yongbo;Zhao, Weijie;Ai, Xiaoqiu
    • Wind and Structures
    • /
    • 제29권6호
    • /
    • pp.471-488
    • /
    • 2019
  • Wind pressure is a critical argument for the wind-resistant design of structures. The attempt, however, to explore the wind pressure field on buildings still encounters challenges though a large body of researches utilizing wind tunnel tests and wind field simulations were carried out, due to the difficulty in logical treatments on the scale effect and the modeling error. The full-scale measurement has not yet received sufficient attention. By performing a field measurement, the present paper systematically addresses wind pressures on the rectangular attic of a double-tower building. The spatial and temporal correlations among wind speed and wind pressures at measured points are discussed. In order to better understand the wind pressure distribution on the attic facades and its relationship against the approaching flow, a full-scale CFD simulation on the similar rectangular attic is conducted as well. Comparative studies between wind pressure coefficients and those provided in wind-load codes are carried out. It is revealed that in the case of wind attack angle being zero, the wind pressure coefficient of the cross-wind facades exposes remarkable variations along both horizontal and vertical directions; while the wind pressure coefficient of the windward facade remains stable along horizontal direction but exposes remarkable variations along vertical direction. The pattern of wind pressure coefficients, however, is not properly described in the existing wind-load codes.

The impact of artificial discrete simulation of wind field on vehicle running performance

  • Wu, Mengxue;Li, Yongle;Chen, Ning
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.169-189
    • /
    • 2015
  • To investigate the effects of "sudden change" of wind fluctuations on vehicle running performance, which is caused by the artificial discrete simulation of wind field, a three-dimensional vehicle model is set up with multi-body dynamics theory and the vehicle dynamic responses in crosswind conditions are obtained in time domain. Based on Hilbert Huang Transform, the effects of simulation separations on time-frequency characteristics of wind field are discussed. In addition, the probability density distribution of "sudden change" of wind fluctuations is displayed, addressing the effects of simulation separation, mean wind speed and vehicle speed on the "sudden change" of wind fluctuations. The "sudden change" of vehicle dynamic responses, which is due to the discontinuity of wind fluctuations on moving vehicle, is also analyzed. With Principal Component Analysis, the comprehensive evaluation of vehicle running performance in crosswind conditions at different simulation separations of wind field is investigated. The results demonstrate that the artificial discrete simulation of wind field often causes "sudden change" in the wind fluctuations and the corresponding vehicle dynamic responses are noticeably affected. It provides a theoretical foundation for the choice of a suitable simulation separation of wind field in engineering application.

Prediction of typhoon design wind speed and profile over complex terrain

  • Huang, W.F.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.1-18
    • /
    • 2013
  • The typhoon wind characteristics designing for buildings or bridges located in complex terrain and typhoon prone region normally cannot be achieved by the very often few field measurement data, or by physical simulation in wind tunnel. This study proposes a numerical simulation procedure for predicting directional typhoon design wind speeds and profiles for sites over complex terrain by integrating typhoon wind field model, Monte Carlo simulation technique, CFD simulation and artificial neural networks (ANN). The site of Stonecutters Bridge in Hong Kong is chosen as a case study to examine the feasibility of the proposed numerical simulation procedure. Directional typhoon wind fields on the upstream of complex terrain are first generated by using typhoon wind field model together with Monte Carlo simulation method. Then, ANN for predicting directional typhoon wind field at the site are trained using representative directional typhoon wind fields for upstream and these at the site obtained from CFD simulation. Finally, based on the trained ANN model, thousands of directional typhoon wind fields for the site can be generated, and the directional design wind speeds by using extreme wind speed analysis and the directional averaged mean wind profiles can be produced for the site. The case study demonstrated that the proposed procedure is feasible and applicable, and that the effects of complex terrain on design typhoon wind speeds and wind profiles are significant.

부산지역 지표 바람장의 특성에 관한 연구 (Study on the Characteristics of Wind Field at Ground Level around Pusan)

  • 김유근;이화운;홍정혜
    • 한국환경과학회지
    • /
    • 제10권2호
    • /
    • pp.135-142
    • /
    • 2001
  • In order to investigate horizontal wind field in the boundary layer around Pusan area, wind speed and wind direction measured at 14 AWS(Automatic Weather Station), 1997, was used. The wind direction at PRM(Pusan Regional Meterological Office) was showed that southwest and northeast wind dominated for spring and summer, northeast wind for fall and northwest for winter. Anticline flow was showed at \`Gaekumm\` which is located between Mt. Backyang(641m) and Mt. Yumkwang(503m) and affected on wind field at \`Pusanjin\`. The low wind speed and various wind direction was represented at the basin topography, \`Buckgu\`, \`Jeasong\`, \`Ilkwang\` and \`Kijang\`. The annual mean wind speed at 14 sites, 2.5ms(sup)-1, was lower than that measured at PRMO, 3.9ms(sup)-1. The wind direction analysis showed that the case of same direction in compare with that measured at PRMO is about 54% and case of opposite direction is about 12%. Annual and seasonal mean windrose showed wind direction is affected by not only synoptic weather state but also topography.

  • PDF

Fluctuating wind field analysis based on random Fourier spectrum for wind induced response of high-rise structures

  • Lin, Li;Ang, A.H.S.;Xia, Dan-dan;Hu, Hai-tao;Wang, Huai-feng;He, Fu-qiang
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.837-846
    • /
    • 2017
  • An accurate calculation of the stochastic wind field is the foundation for analyzing wind-induced structure response and reliability. In this research, the spatial correlation of structural wind field was considered based on the time domain method. A method for calculating the stochastic wind field based on cross stochastic Fourier spectrum was proposed. A flowchart of the proposed methodology is also presented in this study to represent the algorithm and workflow. Along with the analysis of regional wind speed distribution, the wind speed time history sample was calculated, and the efficiency can therefore be verified. Results show that the proposed method and programs could provide an efficient simulation for the wind-induced structure response analysis, and help determine the related parameters easily.

Wind field generation for performance-based structural design of transmission lines in a mountainous area

  • Lou, Wenjuan;Bai, Hang;Huang, Mingfeng;Duan, Zhiyong;Bian, Rong
    • Wind and Structures
    • /
    • 제31권2호
    • /
    • pp.165-183
    • /
    • 2020
  • The first step of performance-based design for transmission lines is the determination of wind fields as well as wind loads, which are largely depending on local wind climate and the surrounding terrain. Wind fields in a mountainous area are very different with that in a flat terrain. This paper firstly investigated both mean and fluctuating wind characteristics of a typical mountainous wind field by wind tunnel tests and computational fluid dynamics (CFD). The speedup effects of mean wind and specific turbulence properties, i.e., turbulence intensity, power spectral density (PSD) and coherence function, are highlighted. Then a hybrid simulation framework for generating three dimensional (3D) wind velocity field in the mountainous area was proposed by combining the CFD and proper orthogonal decomposition (POD) method given the properties of the target turbulence field. Finally, a practical 220 kV transmission line was employed to demonstrate the effectiveness of the proposed wind field generation framework and its role in the performance-based design. It was found that the terrain-induce turbulence effects dominate the performance-based structural design of transmission lines running through the mountainous area.