• 제목/요약/키워드: Wind energy converter

검색결과 126건 처리시간 0.026초

Evaluation and Design Tools for the Reliability of Wind Power Converter System

  • Ma, Ke;Zhou, Dao;Blaabjerg, Frede
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1149-1157
    • /
    • 2015
  • As a key part in the wind turbine system, the power electronic converter is proven to have high failure rates. At the same time, the failure of the wind power converter is becoming more unacceptable because of the quick growth in capacity, remote locations to reach, and strong impact to the power grid. As a result, the correct assessment of reliable performance for power electronics is a crucial and emerging need; the assessment is essential for design improvement, as well as for the extension of converter lifetime and reduction of energy cost. Unfortunately, there still exists a lack of suitable physic-of-failure based evaluation tools for a reliability assessment in power electronics. In this paper, an advanced tool structure which can acquire various reliability metrics of wind power converter is proposed. The tool is based on failure mechanisms in critical components of the system and mission profiles in wind turbines. Potential methodologies, challenges, and technology trends involved in this tool structure are also discussed. Finally, a simplified version of the tool is demonstrated on a wind power converter based on Double Fed Induction Generator system. With the proposed tool structure, more detailed information of reliability performances in a wind power converter can be obtained before the converter can actually fail in the field and many potential research topics can also be initiated.

실제 데이터를 이용한 가변속 풍력발전시스템의 출력제어 시뮬레이션 (Output Control Simulation of Variable Speed Wind Power System using Real Data)

  • 한상근;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1342-1344
    • /
    • 2002
  • Wind is a significant and valuable renewable energy resource. It is safe and abundant and can make an important contribution to future clean, sustainable and diversified electricity supplies. Unlike other sources of energy, wind does not pollute the atmosphere nor create any hazardous waste. In some countries wind energy is already competitive with fossil and nuclear power even without accounting for the environmental benefits of wind power. The cost of electricity from conventional power stations does not usually take full account of its environmental impact (acid rain, oil slick clean up, the effects of climate change, etc). In this paper, a transient phenomenon simulation method for Wind Power Generation System(WPGS) under real weather conditions has been proposed. The simulation method is expected to be able to analyze easily under various conditions with considering the sort of wind turbine, the capacity of system and the converter system. Wind turbine connected to the synchronous generator and power converter was simulated.

  • PDF

Fluctuating Reduction Method for Generation Power of the Wind-PV Hybrid System

  • Oh, Jin-Seok;Lee, Ji-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권2호
    • /
    • pp.80-85
    • /
    • 2004
  • This paper reports the performance of a CB (Circuit Breaker) and converter for the battery operated Wind-PV (Photovoltaic) system. For this purpose, a fluctuating reduction controller for an electric generation hybrid (wind+PV) system is suggested. The method operates a wind turbine, PV, CB, converter and battery. Integration of wind and PV sources, which are generally complementary, usually reduce the capacity of the battery. Also, CB controls the overvoltage of the generation system. The objective is to control the operation of the converter and the CB and reduce power fluctuation. This paper includes discussion on system performance, power quality, fluctuation and effect of the randomness of the wind.

풍력 및 태양광 발전시스템의 일반 특성과 강풍제어기 및 DC-DC컨버터에 대한 연구 (A Study on General Characteristics of Wind and Solar Power System, Automatic Tail Safety Controller and DC-DC Converter)

  • 최정훈;박성준;문채주
    • 조명전기설비학회논문지
    • /
    • 제19권1호
    • /
    • pp.109-116
    • /
    • 2005
  • 풍력 및 태양광 발전시스템은 화석에너지의 고갈에 대한 대체에너지로 각광을 받고 있으며, 환경오염을 발생하지 않고 무한정으로 사용할 수 있으나 풍속과 태양광의 변화에 따른 안정성의 문제가 발생한다. 풍력발전시스템의 경우 태풍과 급속한 풍속의 변화에 의해 시스템의 안정성 문제가 발생한다. 본 논문에서는 풍속을 이용한 피드백 제어를 기초로 하는 자동강풍제어기를 포함하는 풍력 발전시스템을 구성하였으며, 이를 다양한 조건의 실험을 통하여 입증하였다. 태양전지 어레이의 최대 출력을 위한 MPPT제어와 고르지 못한 DC 전압을 정류하기 위하여 buck-boost컨버터를 사용하였고, 실험을 동하여 시스템 출력전류 리플 저감의 결과를 확인하였다.

Improved LVRT Capability and Power Smoothening of DFIG Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.568-575
    • /
    • 2011
  • This paper proposes an application of energy storage devices (ESD) for low-voltage ride-through (LVRT) capability enhancement and power smoothening of doubly-fed induction generator (DFIG) wind turbine systems. A grid-side converter (GSC) is used to maintain the DC-link voltage. Meanwhile, a machine-side converter (MSC) is used to control the active and reactive powers independently. For grid disturbances, the generator output power can be reduced by increasing the generator speed, resulting in an increased inertial energy of the rotational body. Design and control techniques for the energy storage devices are introduced, which consist of current and power control loops. Also, the output power fluctuation of the generator due to wind speed variations can be smoothened by controlling the ESD. The validity of the proposed method has been verified by PSCAD/EMTDC simulation results for a 2 MW DFIG wind turbine system and by experimental results for a small-scale wind turbine simulator.

동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어 (Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator)

  • 송승호;김성주;함년근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권12호
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

소형 직접구동형 풍력발전기의 최대 출력제어 (Maximum Power Control of Small Direct-Drive Wind Power Generator)

  • 김철호;이우석;서영택;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.875-877
    • /
    • 2004
  • Research related to renewable energy is urgently required to cope with the depletion of fossil fuel and the environmental pollution. This paper deals with maximum power control of 1kW rating wind power generator. To implement direct-drive generator, axial flux permanent magnet generator is adopted to test the converter. The blade is attached to the surface of outer rotor disk. Generally wind power generator is operated under the rated wind speed. To capture maximum power at my given wind speed, the coordination of generator and converter is essential. Buck/Boost converter is designed to charge 24V battery and under the low wind speed it operates as boost converter.

  • PDF

Boost 컨버터와 계통연계 인버터를 이용한 풍력발전의 센서리스 MPPT 제어 (Sensorless MPPT Control using a Boost Converter and a Grid Side Inverter in Wind Power Generation Systems)

  • 김도윤;이준민;김영석
    • 전기학회논문지
    • /
    • 제60권7호
    • /
    • pp.1372-1377
    • /
    • 2011
  • This paper proposes the control method of MPPT(maximum power point tracking) for the wind energy generation system using the duty ratio control of boost type DC-DC converter. For a lower cost and a higher reliability, the wind and the generator velocity sensors are removed. MPPT control is implemented by changing the duty ratio of the boost converter. Chain rule is applied by using each function. The grid side inverter is controlled to regulate unity power factor. The proposed control method was analyzed mathematically and verified by the computer simulation using PSIM.

Modeling and Control of IGBT Converter-Based High-Voltage Direct Current System

  • Kim, Hong-Woo;Ko, Suk-Whan;An, Hae-Joon;Jang, Gil-Soo;Ko, Hee-Sang
    • 조명전기설비학회논문지
    • /
    • 제25권7호
    • /
    • pp.97-104
    • /
    • 2011
  • This paper presents modeling and control for the emerging IGBT converter-based high-voltage direct-current system (IGBT-HVDC). This paper adds to the representation of the IGBT-HVDC system in the dq-synchronous reference frame and its decoupled control scheme. Additionally, since the IGBT-HVDC is able to actively support the grid due to its capacity to control independently active and reactive power production, a reactive power control scheme is presented in order to regulate/contribute to the voltage at a remote location by taking into account its operational state and limits. The ability of the control scheme is assessed and discussed by means of simulations using ahybrid power system, which consists of a permanent magnetic synchronous-generator (PMSG) based wind turbine, an IGBT-HVDC, and a local load.

High Performance MPPT Based on Variable Speed Generator Driven by Wind Power Generation in Battery Applications

  • Padmanabhan, Sutha;Kaliyappan, Kannan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.205-213
    • /
    • 2014
  • A wind generator (WG) maximum power point tracking (MPPT) system is presented here. It comprises of a variable-speed wind generator, a high-efficiency boost-type dc/dc converter and a control unit. The advantages of the aimed system are that it does not call for the knowledge of the wind speed or the optimal power characteristics and that it operates at a variable speed, thus providing high efficiency. The WG operates at variable speed and thus suffers lower stress on the shafts and gears compared to constant-speed systems. It results in a better exploitation of the available wind energy, especially in the low wind-speed range of 2.5-4.5 m/s. It does not depend on the WG wind and rotor-speed ratings or the dc/dc converter power rating. Higher reliability, lower complexity and cost, and less mechanical stress of the WG. It can be applied to battery-charging applications.