• Title/Summary/Keyword: Wind energy

Search Result 2,894, Processing Time 0.035 seconds

Electromagnetic Field Analysis of 230 kW-class Low Wind Speed Medium Wind Turbine for Island-area Application (도서지역 적용을 위한 230 kW급 저풍속 중형 풍력발전기의 전자장해석)

  • Choi, Mansoo;Choi, Hyewon;Lee, Changmin;Choi, Hyenjun
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.14-19
    • /
    • 2020
  • Recently, a project to build a carbon zero island with no carbon emissions has been carried out by replacing diesel generators with renewable energy sources in island areas where diesel generators supplied local loads as independent systems. To minimize damage to the lives of islanders, low noise wind generators should be installed by adjusting the rated speed. In islands with low loads, wind turbines that are more efficient than medium-sized wind turbines should be installed. In this study, the generator field analysis and characteristics were analyzed to develop 230 kW-class low wind medium-wind turbine technology. The electromagnetic field analysis program used Maxwell. As a result, the cogging torque was reduced, and the initial maneuver wind speed and loss value were lowered. Hence, the output amount was increased with high efficiency.

Pitching Motion Analysis of Floating Spar-buoy Wind Turbine of 2MW Direct-drive PMSG (2 MW 영구자석 직접 구동형 부유식 스파 부이 풍력 발전기의 피칭 운동해석)

  • Shin, Pyungho;Kyong, Namho;Choi, Jungchul;Ko, Heesang
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • A series of coupled time domain simulations considering stochastic waves and wind based on five 1-h time-domain analyses are performed in normal operating conditions. Power performance and tower base Fore-Aft bending moment and pitching motion response of the floating spar-buoy wind turbine with 2 MW direct-drive PMSG have been analyzed by using HAWC2 that account for aero-hydro-servo-elastic time domain simulations. When the floating spar-buoy wind turbine is tilted in the wind direction, maximum of platform pitching motion is close to $4^{\circ}$. Statistical characteristics of tower base Fore-Aft bending moment of floating spar-buoy wind turbine are compared to that of land-based wind turbine. Maximum of tower base Fore-Aft bending moment of floating spar-buoy wind turbine and land-based wind is 94,448 kNm, 40,560 kNm respectively. This results is due to changes in blade pitch angle resulting from relative motion between wave and movement of the floating spar-buoy wind turbine.

A Classification of the Wind Turbine Accident (풍력발전기에서 발생하는 사고의 원인에 대한 분류)

  • Yang, In-Sun;Kim, Seok-Woo;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.29-35
    • /
    • 2005
  • Wind turbines can produce an unpolluted electricity getting energy only from the natural resource. It is one of the most economic power generating system among renewables up to now. Currently, ther are many wind turbines in operation world-wide under various external conditions. A wind turbine is composed of many machine components. So it is likely that the many accidents have been occurred in many wind turbines. In this paper, we reviewed "Wind turbine Accident data" of Caithness Windfarms Information Forum 2005. We classified this data and analyzed. The most of wind turbines in our country are foreign product. It is like that application it is possible with information which is important for wind farm operations and maintenance and for the wind turbine design and manufacturing.

Analysis of wind field data surrounding nuclear power plants to improve the effectiveness of public protective measures

  • Jin Sik Choi;Jae Wook Kim;Han Young Joo;Jeong Yeon Lee;Chae Hyun Lee;Joo Hyun Moon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3599-3616
    • /
    • 2023
  • After a nuclear power plant (NPP) accident, it would be helpful to predict the movement of the radioactive plume emitted from the NPP as accurately as possible to protect the nearby population. Radioactive plumes are mainly affected by wind direction and speed. Since it is difficult to identify the wind direction and speed immediately after the accident, a good understanding of the historical wind data could save many lives and ensure smoother evacuation procedures. In this study, wind data for the past 10 years are analyzed for the five NPPs in the Republic of Korea (ROK). The analyzed data include wind direction and wind speed from 2012 to 2021. In particular, the characteristics of the wind field blowing from the NPPs to the nearest densely populated regions are examined. Finally, suggestions to improve evacuation plans are made.

A high-resolution mapping of wind energy potentials for Mauritius using Computational Fluid Dynamics (CFD)

  • Dhunny, Asma Z.;Lollchund, Michel R.;Rughooputh, Soonil D.D.V.
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.565-578
    • /
    • 2015
  • A wind energy assessment is an integrated analysis of the potential of wind energy resources of a particular area. In this work, the wind energy potentials for Mauritius have been assessed using a Computational Fluid Dynamics (CFD) model. The approach employed in this work aims to enhance the assessment of wind energy potentials for the siting of large-scale wind farms in the island. Validation of the model is done by comparing simulated wind speed data to experimental ones measured at specific locations over the island. The local wind velocity resulting from the CFD simulations are used to compute the weighted-sum power density including annual directional inflow variations determined by wind roses. The model is used to generate contour maps of velocity and power, for Mauritius at a resolution of 500 m.

The Prediction of the location and electric Power for Small Wind Powers in the H University Campus (대학교 캠퍼스 소형풍력발전기 설치 및 발전량 예측에 관한 연구)

  • Cho, Kwan Haeng;Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.127-132
    • /
    • 2012
  • The energy consumption in the world is growing rapidly. And the environmental issues of climate become a important task. The interest in renewable energy like wind and solar is increasing now. Especially, by reducing power transmission loss, a small wind power is getting attention at the residential areas and campus of university. In this study, we attempted to estimate and compare the wind energy density using wind data of AWS (Automatic Weather Station) of H University. In this case of a campus, the weibull distribution parameter C is 2.27, and K is 0.88. According to the data, the energy density of the small wind power is 12.7 W/m2. We did CFD(Computational Fluid Dynamics) simulations at H University campus by 7 wind directions(ENE, ESE, SE, NW, WNW, W, WSW). In the results, we suggest 4 small wind powers. The small wind power generating system can produce 4,514kWh annually.

Study of the Spatial Location Analysis for Domestic Offshore Wind Farm (국내 해상풍력 발전단지 입지 분석 연구)

  • Kim, Dong-Hwi;Lee, Yong-Jun;Ryu, In-Ho;Seo, Dae-Rim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.504-511
    • /
    • 2010
  • After facing the fact such as fossil-fuel depletion, global warming, the Kyoto Protocol coming into force of mandatory reductions of carbon dioxide, the world is actively promoting the spread of the solar, wind, tidal, geothermal and other clean renewable energy technology development. Among them, wind power is the only alternative energy to secure a comparable price competition with fossil fuels because cheaper price power generation than other renewable energy when creating large-scale wind farm, thus wind power is the fastest growing industries in the world in the renewable energy field. Especially the offshore wind power is showing rapid growth as most of the wind power sector because of less changes of wind speed, no restrictions of land use, and large-scale development of offshore wind power. In this paper, the field of site selection and spatial location analysis techniques for development of large-scale offshore wind farm are discussed primarily. This paper shows overview of offshore wind power and establishment procedure for development of offshore wind farm.

  • PDF

A Study on Development of Wind Power 400W Generation System with Vertical axis Type (400W 수직형 풍력발전시스템의 개발에 관한 연구)

  • Yoon, Jeong-Phil;Choi, Jang-Kyun;Cha, In-Su
    • New & Renewable Energy
    • /
    • v.2 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • Need developments of substitute energy to solve problem of global warming by excess use of fossil energy, excess discharge of carbon dioxide. wind power generation system is all-important energy in next generation as clean energy. Environmental pollution of wind power generation system is not exhausted entirely. And, electric-power generation system cost is cheap than other energy. Wind Generation system that is supplied much present is most horizontality style blade structure. But, Horizontal style structure is serious noise and there is problem in stability of blade. We designed special blade solve to this problem. And, manufactured vertical axis wind power generation system because using blade. Also, developed assistance power generator to increase driving efficiency ago wind power generation. We expect this devices that is such cover shortcoming of wind power generation system.

  • PDF

Reliability assessment of ERA-Interim/MERRA reanalysis data for the offshore wind resource assessment (해상풍력자원 평가를 위한 ERA-Interim/MERRA 재해석 데이터 신뢰성 평가)

  • Byun, Jong-Ki;Son, Jin-Hyuk;Ko, Kyung-Nam
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.44-51
    • /
    • 2016
  • An investigation on reliability of reanalysis wind data was conducted using the met mast wind data at four coastal regions, Jeju Island. Shinchang, Handong, Udo and Gangjeong sites were chosen for the met mast sites, and ERA-Interim and MERRA reanalysis data at two points on the sea around Jeju Island were analyzed for creating Wind Statistics of WindPRO software. Reliability of reanalysis wind data was assessed by comparing the statistics from the met mast wind data with those from Wind Statistics of WindPRO software. The relative error was calculated for annual average wind speed, wind power density and annual energy production. In addition, Weibull wind speed distribution and monthly energy production were analyzed in detail. As a result, ERA-Interim reanalysis data was more suitable for wind resource assessment than MERRA reanalysis data.

Wind Resource Assessment for Green Island - Dokdo (녹색섬 풍력자원평가 - 독도)

  • Kim, Hyun-Goo;Kim, Keon-Hoon;Kang, Young-Heaok
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.94-101
    • /
    • 2012
  • A Dokdo wind resource map has been drawn up for the Green Island Energy Master Plan according to Korea's national vision for 'Low Carbon Green Growth'. The micro-siting software WindSim v5.1,which is based on Computational Flow Analysis, is used with MERRA reanalysis data as synoptic climatology input data, and sensitivity analysis on turbulence model is accompanied. A wind resource assessment has been conducted for the Dokdo wind power dissemination plan, which consists of two 10kW wind turbines to be installed at the Dongdo dock and Dokdo guard building. It is evaluated that the capacity factors at Dongdo dock and Dokdo guard building are about 20% and 30% respectively, and annual and hourly variations of wind power generation have been analyzed, but summertime energy production is predicted to be only 40% of wintertime energy production.