• Title/Summary/Keyword: Wind direction angle

Search Result 139, Processing Time 0.025 seconds

Optimization of Wind Louver Angle By CFD Simulation

  • Piao, Gensong;Shon, Donghwa;Kim, Youngwoo;Lee, Jungwon;Choi, Jaepil
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.137-144
    • /
    • 2016
  • The objective of this study was to determine the optimal angle of a wind louver that would induce the optimal wind speed for indoor. Being controlled to have an optimized angle depending on the direction from which wind is blowing and the wind speed, the wind louver to be installed on the building envelop comes to create indoor comfort through a constant wind speed using the function that reduces the indoor wind speed by changing the angle when the wind speed is not lower than a certain level and makes wind flow into the room to the maximum when the wind direction is adverse to catching the wind or the wind speed is not higher than a certain level. To determine the optimal wind louver angle, a core-centered office building with cross-ventilation problems in the climate of Seoul, Korea, which experiences four distinct seasons, was considered for analysis in this study. A module 1 office space model was used for the CFD simulation to analyze the average indoor wind speed with respect to the outdoor wind speed (varied between 1 and 8 m/s), the wind louver angle, and the outdoor wind direction (varied between $0^{\circ}$ and $180^{\circ}$ in steps of $10^{\circ}$).

Aerodynamic analysis and control mechanism design of cycloidal wind turbine adopting active control of blade motion

  • Hwang, In-Seong;Lee, Yun-Han;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2007
  • This paper describes the cycloidal wind turbine, which is a straight blade vertical axis wind turbine using the cycloidal blade system. Cycloidal blade system consists of several blades rotating about an axis in parallel direction. Each blade changes its pitch angle periodically. Cycloidal wind turbine is different from the previous turbines. The wind turbine operates with optimum rotating forces through active control of the blade to change pitch angle and phase angle according to the changes of wind direction and wind speed. Various numerical experiments were conducted to develop a small vertical axis wind turbine of 1 kW class. For this numerical analysis, the rotor system equips four blades consisting of a symmetric airfoil NACA0018 of 1.0m in span, 0.22m in chord and 1.0m in radius. A general purpose commercial CFD program, STAR-CD, was used for numerical analysis. PCL of MSC/PATRAN was used for efficient parametric auto mesh generation. Variables of wind speed, pitch angle, phase angle and rotating speed were set in the numerical experiments. The generated power was obtained according to the various combinations of these variables. Optimal pitch angle and phase angle of cycloidal blade system were obtained according to the change of the wind direction and the wind speed. Based on data obtained from the above analysis, control device was designed. The wind direction and the wind speed were sensed by a wind indicator and an anemometer. Each blades were actuated to optimal performance values by servo motors.

Analyses on the sea surface wind field data by satellite remote sensing (위성원격탐사를 활용한 해양표면 바람장 자료 분석)

  • Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.149-157
    • /
    • 2008
  • If we use the microwave of SAR, we can observe ocean in spite of severe weather or night time. The sea surface image of SAR has numerous information about atmospheric phenomena related to surface wind field. The extracted wind information from SAR can be used diversely. In order to extract sea wind speed from SAR image, a generated wind direction from SAR and sigma nought should be input into wind model. Therefore, wind speed can be obtained by input wind direction into CMOD5 Model. Azimuth angle using CMOD5 Model is generated by added $90^{\circ}$ to Look angle which is extracted from SAR data file. A gained wind direction spectrum from SAR image has $180^{\circ}$ ambiguity because of 2D-FFT. This ambiguity should decide to use the location of land, wind direction in field or the result of numerical model. Consequently, wind direction using 2D-FFT is $3^{\circ}{\sim}7^{\circ}$ differences with actual surveying data. Wind speed by CMOD5 model is similar to actual surveying data as below 2m/s.

Technique of Measuring Wind Speed and Direction by Using a Roll-rotating Three-Axis Ultrasonic Anemometer (II) (롤 회전하는 3축 초음파 풍속계를 활용한 풍향 풍속 측정기법(II))

  • Chang, Byeong Hee;Lee, Seunghoon;Kim, Yang won
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • In a previous study, a technique for measuring wind speed and direction by using a roll-rotating three-axis ultrasonic anemometer was proposed and verified by wind tunnel tests. In the tests, instead of a roll sensor, roll angle was trimmed to make no up flow in the transformed wind speeds. Verification was done in point of the residual error of the rotation effect treatment. In this study, roll angle was measured from the roll motor encoder and the transformed wind speed and direction on the test section axis were compared with the ones provided to the test section. As a result, up to yaw $20^{\circ}$ at a wind speed of 12 m/sec or over, the RMS error of wind speed was within the double of the ultrasonic anemometer error. But at yaw $30^{\circ}$, it was over the double of the ultrasonic anemometer error. Regardless of wind speed, at yaw $20^{\circ}$ and $30^{\circ}$, the direction error was within the double of the ultrasonic anemometer error. But at yaw $10^{\circ}$ or less, it was within the error of the ultrasonic anemometer itself. This is a very favorable characteristic to be used for wind turbine yaw control.

CORRECTION OF THE EFFECT OF RELATIVE WIND DIRECTION ON WIND SPEED DERIVED BY ADVANCED MICROWAVE SCANNING RADIOMETER

  • Konda, Masanori;Shibata, Akira
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.386-389
    • /
    • 2006
  • The sea surface wind speed (SSWS) derived by microwave radiometer can be contaminated by change of microwave brightness temperature owing to the angle between the sensor azimuth and the wind direction (Relative Wind Direction). We attempt to correct the contamination to the SSWS derived by Advanced Microwave Scanning Radiometer (AMSR) on Advanced Earth Observing Satellite II (ADEOS-II), by applying the method proposed by Konda and Shibata (2004). The improvement of accuracy of the SSWS estimation amounts to roughly 60% of the error caused by the RWD effect.

  • PDF

Mobile sand barriers for windblown sand mitigation: Effects of plane layout and included angle

  • Gao, Li;Cheng, Jian-jun;Ding, Bo-song;Lei, Jia;An, Yuan-feng;Ma, Ben-teng
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.275-290
    • /
    • 2022
  • Mobile sand barriers are a new type sand-retaining structure that can be moved and arranged according to the engineering demands of sand control. When only used for sand trapping, mobile sand barriers could be arranged in single row. For the dual purposes of sand trapping and sand stabilization, four rows of mobile sand barriers can be arranged in a staggered form. To reveal the effect of plane layout, the included angle between sand barrier direction and wind direction on the characteristics of flow fields and the sand control laws of mobile sand barriers, numerical computations and wind tunnel tests were conducted. The results showed that inflows deflected after passing through staggered arrangement sand barriers due to changes in included angle, and the sand barrier combination exerted successive wind resistance and group blocking effects. An analysis of wind resistance efficiency revealed that the effective protection length of staggered arrangement sand barriers approximately ranged from the sand barrier to 10H on the leeward side (H is sand barrier height), and that the effective protection length of single row sand barriers roughly ranged from 1H on the windward side to 20H on the leeward side. The distribution of sand deposit indicated that the sand interception increased with increasing included angle in staggered arrangement. The wind-breaking and sand-trapping effects were optimal when included angle between sand barrier direction and wind direction is 60°-90°.

Non-uniform wind environment in mountainous terrain and aerostatic stability of a bridge

  • Chen, Xingyu;Guo, Junjie;Tang, Haojun;Li, Yongle;Wang, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.649-662
    • /
    • 2020
  • The existence of a dam has potential effects on the surrounding wind environment especially when it is located in mountainous areas. In this situation, the long-span bridge over the reservoir can easily be exposed to non-uniform incoming flows, affecting its wind-resistance performance. This paper presents a study on the aerostatic stability of such a bridge. Wind tunnel tests were first carried out to investigate the wind environment above a mountainous reservoir. The results show that the angle of attack and the wind speed along the bridge axis show obvious non-uniform characteristics, which is related to the inflow direction. When winds come from the south where the river is winding, the angle of attack varies along the span direction significantly. The finite element model for the bridge was established using ANSYS software, and effects of non-uniform wind loads on the aerostatic stability were computed. Non-uniform angle of attack and wind speed are unfavorable to the aerostatic stability of the bridge, especially the former. When the combined action of non-uniform angle of attack and wind speed is considered, the critical wind speed of aerostatic instability is further reduced. Moreover, the aerostatic stability of the bridge is closely related to the dam height.

User-friendly adjustable table fan with selective rotation angles (사용 편의성 향상을 위한 선풍기의 효율적 회전구간 선정)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Since a general household fan has only one left/right turning stage, the rotation angle cannot be adjusted leading to cases whether the wind reaches to an unnecessary area or vice versa. In this paper, we propose a method to efficiently control the turning section to selectively send wind to a necessary space while reducing energy waste. The minimum rotation angle was obtained by experimentally measured the stationary wind direction angle of the fan, and the optimal number of turning stages was selected by appropriately dividing the space where the wind reaches. Through this, it was confirmed that if the fan has a minimum rotation angle of 45°, a turning section of 3 stages and its rotation angle is increased by twice the stationary wind direction angle at each stage, the wind is distributed efficiently. Therefore, it is considered that the selective turning stage control proposed in this paper can minimize energy waste without significant change of the fan structure.

Wind tunnel study of wind structure at a mountainous bridge location

  • Yan, Lei;Guo, Zhen S.;Zhu, Le D.;Flay, Richard G.J.
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.191-209
    • /
    • 2016
  • Wind tunnel tests of a 1/2200-scale mountainous terrain model have been carried out to investigate local wind characteristics at a bridge location in southeast Tibet, China. Flows at five key locations on the bridge at deck level were measured for 26 directions. It was observed that wind characteristics (including mean wind velocity and overall turbulence intensity) vary significantly depending on the approaching wind direction and measurement position. The wind inclination angle measured in the study fluctuated between $-18^{\circ}$ and $+16^{\circ}$ and the ratio of mean wind velocity to reference wind velocity was small when the wind inclination angles were large, especially for positive wind inclination angles. The design standard wind speed and the minimum critical wind speed for flutter rely on the wind inclination angle and should be determined from the results of such tests. The variation of wind speed with wind inclination angles should be of the asymmetry step type. The turbulence characteristics of the wind were found to be similar to real atmospheric flows.

Wind profiles of tropical cyclones as observed by Doppler wind profiler and anemometer

  • He, Y.C.;Chan, P.W.;Li, Q.S.
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.419-433
    • /
    • 2013
  • This paper investigates the vertical profiles of horizontal mean wind speed and direction based on the synchronized measurements from a Doppler radar profiler and an anemometer during 16 tropical cyclones at a coastal site in Hong Kong. The speed profiles with both open sea and hilly exposures were found to follow the log-law below a height of 500 m. Above this height, there was an additional wind speed shear in the profile for hilly upwind terrain. The fitting parameters with both the power-law and the log-law varied with wind strength. The direction profiles were also sensitive to local terrain setups and surrounding topographic features. For a uniform open sea terrain, wind direction veered logarithmically with height from the surface level up to the free atmospheric altitude of about 1200 m. The accumulated veering angle within the whole boundary layer was observed to be $30^{\circ}$. Mean wind direction under other terrain conditions also increased logarithmically with height above 500 m with a trend of rougher exposures corresponding to lager veering angles. A number of empirical parameters for engineering applications were presented, including the speed adjustment factors, power exponents of speed profiles, and veering angle, etc. The objective of this study aims to provide useful information on boundary layer wind characteristics for wind-resistant design of high-rise structures in coastal areas.