• Title/Summary/Keyword: Wind convergence

Search Result 310, Processing Time 0.022 seconds

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF

Numerical Analysis to Predict Air Flow Phenomena in a Road Tunnel (도로 터널내의 공기유동 양상을 예측하기 위한 수치해석)

  • Choi, In-Su;Park, Byung-Duck;Youn, Il-Ro
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.313-320
    • /
    • 2002
  • A 2-dimensional $k-{\varepsilon}$ numerical model was developed to explore the effects of vehicle movement, jet fan and wind speed for the ventilation of road tunnels. To consider the temperature distribution in the tunnel, the energy equation was solved with a source term of the energy exhausted from vehicles. Although the tunnel ventilation can be made by the piston effect of vehicle movement, an additional ventilation is necessary when a head wind is existing. Jet fans may assist the air flow in the tunnel. However, more efficient ventilation system should be necessary, because the exhaust gas from vehicles flow along the road surface and it cannot be diffused in the longitudinal tunnel.

  • PDF

A Study of the Characteristics of Input Boundary Conditions for the Prediction of Urban Air Flow based on Fluid Dynamics (유체 역학 기반 도시 기류장 예측을 위한 입력 경계 바람장 특성 연구)

  • Lee, Tae-Jin;Lee, Soon-Hwan;Lee, Hwawoon
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1017-1028
    • /
    • 2016
  • Wind information is one of the major inputs for the prediction of urban air flow using computational fluid dynamic (CFD) models. Therefore, the numerical characteristics of the wind data formed at their mother domains should be clarified to predict the urban air flow more precisely. In this study, the formation characteristics of the wind data in the Seoul region were used as the inlet wind information for a CFD based simulation and were analyzed using numerical weather prediction models for weather research and forecasting (WRF). Because air flow over the central part of the Korean peninsula is often controlled not only by synoptic scale westerly winds but also by the westerly sea breeze induced from the Yellow Sea, the westerly wind often dominates the entire Seoul region. Although simulations of wind speed and air temperature gave results that were slightly high and low, respectively, their temporal variation patterns agreed well with the observations. In the analysis of the vertical cross section, the variation of wind speed along the western boundary of Seoul is simpler in a large domain with the highest horizontal resolution as compared to a small domain with the same resolution. A strong convergence of the sea breeze due to precise topography leads to the simplification of the wind pattern. The same tendency was shown in the average vertical profiles of the wind speed. The difference in the simulated wind pattern of two different domains is greater during the night than in the daytime because of atmospheric stability and topographically induced mesoscale forcing.

A Study on Supporting Small and Medium Enterprises for the Development of Offshore Wind Industry (해상풍력산업 발전을 위한 중소·중견 기업 지원 방안 연구)

  • Choi, Young-Moon;Choi, Jeongho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.167-172
    • /
    • 2021
  • In the situation where expectations for the growth potential of the domestic offshore wind market are increasing due to the bright growth prospect of the global offshore wind market and the motivated plan of the Korean government, domestic and foreign literature on the direction of offshore wind power generation are examined for the successful development of domestic offshore wind power, the introduction of offshore wind power is diagnosed, and improvement plans are presented for the wind power-related system being promoted by the government. In addition, practical support measures are suggested to foster related SMEs. The results of the study are as follows. First, as technology development is mainly focused on large corporations, the development capacity of small and medium manufacturing industry is very low. Therefore, it is necessary to establish and operate a core center led by government agencies to provide technical support with the initiative of national research institutes and large corporations, and universities and national research institutes should strengthen the independence of small and medium-sized enterprises through training and research and development of professional manpower. Second, as a result of the survey on the practical support plan of the company, it was found that there is a need for various support for technology development and commercialization of produced parts.

A Study of Convective Band with Heavy Rainfall Occurred in Honam Region

  • Moon, Tae-Su;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.601-613
    • /
    • 2015
  • On the study of the characteristics and life cycle of mesoscale convective band in type of airmass that occurred in the Honam area from June to September for only 4 years in the period of 2009~2012, 10 examples based on the amount of rainfall with AWS 24 hours/60 minutes rainfalls, Mt. Osung radar 1.5 km CAPPI/X-SECT images and KLAPS data for convective band with heavy rainfall event were selected. There were analyzed and classified by using the convective band with heavy rainfall occurred along the convergence line of sea wind in the form of individual multi-cellular cell and moving direction of convective band appeared in a variety of patterns; toward southwestern (2 cases), northeastern (4 cases), congesting (2 cases), and changing its moving direction (2 cases). The case study dated of the 17th Aug. 2012 was chosen and implemented by sequentially different evolution of its shape along the convergence line of sea wind cell and moving direction of convective band as equivalent potential temperatures at the lower layer have increased to the upper layer 500 hPa, that the individual cells were developed vertically and horizontally through their merger, but owing to divergence caused by weakened rainfall and descending air current, the growth of new cell was inhibited resulting in dissipation of convective cells.

Numerical Simulations of the local circulation in coastal area using Four-Dimensional Data Assimilation Technique (4차원 자료동화 기법을 이용한 해안가 대기 순환의 수치 실험)

  • Kim, Cheol-Hee;Song, Chang-Keun
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.2
    • /
    • pp.79-91
    • /
    • 2002
  • Four dimensional data assimilation (FDDA) technique was considered for 3 dimensional wind field in coastal area and a set of 3 numerical experiments including control experiments has been tested for the case of the synoptic weather pattern of the weak northerly geostrophic wind with the cloud amount of less than 5/10 in autumn. A three dimensional land and sea breeze model with the sea surface temperature (SST) of 290K was performed without nudging the observed wind field and surface temperature of AWS (Automatic Weather System) for the control experiment. The results of the control experiment showed that the horizontal temperature gradient across the coastline was weakly simulated so that the strength of the sea breeze in the model was much weaker than that of observed one. The experiment with only observed horizontal wind field showed that both the pattern of local change of wind direction and the times of starting and ending of the land-sea breeze were fairly well simulated. However, the horizontal wind speed and vertical motion in the convergence zone were weakly simulated. The experiment with nudgings of both the surface temperature and wind speed showed that both the pattern of local change of wind direction and the times of starting and ending of the land-sea breeze were fairly well simulated even though the ending time of the sea breeze was delayed due to oversimulated temperature gradient along the shoreline.

Validation of Power Coefficient and Wake Analysis of Scaled Wind Turbine using Commercial CFD Program (상용 CFD 프로그램을 이용한 풍력터빈 축소모델 출력계수 검증 및 후류 해석)

  • Kim, Byoungsu;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A numerical simulation on the wake flow of a wind turbine which is a scaled version of a multi-megawatt wind turbine has been performed. Two different inlet conditions of averaged wind speed including one below and one above the rated wind speed were used in the simulation. Steady-state pitch angles of the blade associated with the two averaged wind speeds were imposed for the simulation. The steady state analysis based on the Reynolds averaged Navier-Stokes equations with the method of frame motion were used for the simulation to find the torque of the rotor and the wake field behind the wind turbine. The simulation results were compared with the results obtained from the wind tunnel testing. From comparisons, it was found that the simulation results on the turbine power are pretty close to the experimental values. Also, the wake results were relatively close to the experimental results but there existed some discrepancy in the shape of velocity deficit. The reason for the discrepancy is considered due to the steady state solution with the frame motion method used in the simulation. However, the method is considered useful for solutions with much reduced calculation time and reasonably good accuracy compared to the transient analysis.

Finite Element Analysis of Slewing Bearings for Wind Turbines Using Spring Elements (스프링요소를 이용한 풍력발전기용 슬루잉 베어링의 유한요소해석)

  • Han, Ki-Bong;Kang, Jong-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.239-247
    • /
    • 2020
  • This study is about design and verification of stress reduction of bearings for wind turbines. In a slewing bearing having a typical four-contact structure, the contact point moves to the end of the raceway due to a large moment load, resulting in a stress concentration. A bearing was designed to reduce such contact point movement. The deformation behavior of typical ball bearings and newly designed bearings was calculated through finite element analysis under ultimate load by replacing the ball with a spring element. The contact stress between the ball and the raceway was calculated by finite element analysis by inputting the deformation behavior analysis result as a boundary condition. The effectiveness of the bearing stress analysis method using spring elements was verified through comparison of the contact stress according to the bearing structure.

Construction Technology Roadmapping for Port Offshore Wind Farm (항만해상풍력단지 건설기술 로드맵 수립)

  • Kim, Ki-Yoon;Jeong, Suk-Jai;Lee, Suk-Jun
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.137-148
    • /
    • 2013
  • This paper aims to presents a systematic procedure for the development of construction technology roadmap, which can consider the offshore wind farm on port. Then the weight among the large/medium/small classified construction technology has identified through the AHP(Analytical Hierarchy Process) approach using FGI(Focus Group Interview) and questionnaire study. Based on the priority for classified construction technology a construction technology roadmap for port offshore wind farm was also developed. The technology roadmap suggests the time frame(20 years, from 2016 to 2036) to complete R&D work for the classified construction technology of port offshore wind farm. Such construction technology roadmap can be utilized as a milestone in setting up the R&D strategy in the green port construction industry.

Scheduling and Cost Estimation Simulation for Transportation and Installation of the Offshore Monopile Wind Turbines (모노파일 해상풍력발전의 이송과 설치를 위한 일정계획 및 비용분석 시뮬레이션)

  • Kim, Boram;Son, Myeong-Jo;Jang, Wangseok;Kim, Tae-Wan;Hong, Keyyong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.193-209
    • /
    • 2015
  • For reasons such as global warming, depletion of fossil fuels and the danger of nuclear energy the research and development of renewable energy is actively underway. Wind energy has advantages over another renewable energy in terms of location requirements, energy efficiency and reliability. Nowadays the research and development area is expanded to offshore because it can supply more wind reliability and free from noise pollution. In this study, the monopile offshore wind turbine transportation and installation (T&I) process are investigated. In addition, the schedule and cost for the process are estimated by discrete event simulation. For the simulation, simulation models for various means of T&I are developed. The optimum T&I execution plan with shortest duration and lowest cost can be found by using different mission start day and T&I means.