• 제목/요약/키워드: Wind climate

검색결과 609건 처리시간 0.026초

전력시설물 설계를 위한 풍하중 산정식 (Wind load equation for electric power facility design)

  • 최상현;서경석;이수형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.42-54
    • /
    • 2009
  • The wind load equation for the design of electric power facilities such as electrical pole in railroad is based on the maximum wind velocity without considering regional difference in wind velocities. Also, the use of a different equation to highspeed railroad and the possibility of higher wind speed due to climate change claims a new design equation. In this paper, a wind load equation based on wind speed measurement data to date, which is applicable to both conventional and highspeed railroad is proposed. The proposed equation considers the regional differences in wind speed for economic and effective design, and the possibility of higher wind speed due to climate change.

  • PDF

바람통로 예측모델링을 통한 바람통로 계획전략 - 성남판교 신도시 개발지구를 중심으로 - (Air Corridor Planning Strategy based on the Wind Field and Air Corridor Simulation - A Case Study of Pan-Gyo New Town Development Area -)

  • 황기현;송영배
    • 한국조경학회지
    • /
    • 제31권5호
    • /
    • pp.43-57
    • /
    • 2003
  • This paper presents the air corridor planning strategy based on simulation with MUKLMO_3 (Micro-scale Urban Climate Model) to investigate the wind field and air corridor caused by the land-use change of the New Town Development Area in Pan-Gyo. In the first part, the most frequently observed wind field in the New Town Development Area was measured and used as an initial value to simulate a more realistic wind field and air corridor. Several experiments with different initial values of wind fields were carried out to investigate the wind field change affected by the New Town Development. The results show the features of the wind field of the neutral stability condition in the urban canopy layer with a high resolution near the ground. The wind speed is weakened at this level due to the New Town Development. It was found that the wind field and air corridor are influenced by the land-use change. After the development of the New Town, the speed of the wind field decreased and the main wind directions and air corridor changed. In this study, this model is found to be a useful tool for evaluating air corridor and change of wind field in speed and direction.

고층건물 도로협곡의 바람특성 (Wind Characteristics of Urban Street Canyon at High Rise Building Area)

  • 정해연;김문성;이성희;이규석
    • 한국환경복원기술학회지
    • /
    • 제15권2호
    • /
    • pp.9-18
    • /
    • 2012
  • The street canyon forms the geometric unit of the built environment. The geometry makes up urban canyons and it influences the urban climate. In order to investigate the wind characteristics of urban street canyon at Dogok-dong, Gangnam-gu in Seoul, the wind direction and wind speed data were observed and analyzed by using 2-D ultra sonic and propeller wind monitor from May 5, 2010 to May 4, 2011. The results show that the prevailing wind direction was west at Station A(Military Mutual Aid Association Building), southwest at Station B(Sookmyung Girls' High School) and the wind speed of Station B was higher than Station A. There were diurnal differences about prevailing wind direction between two stations : it was westerly wind at Station A for a whole day, but at Station B only from 22 : 00 to 04 : 00. However, Station B is different from Station A at other time. At Station B, it was easterly wind from 04 : 00 to 12 : 00, southwesterly wind from 12 : 00 to 22 : 00. In terms of seasonal(except winter) frequency, the spring shows the highest frequency and fall was the next.

냉기류를 이용하여 공동주택단지 내 지하주차장 오염농도를 저감하는 기후 디자인에 관한 연구 (A study on climate design using cold air flow to reduce air contaminant concentration of underground garage in the apartment complex)

  • 김태한;조경학;최지혜;김석철
    • KIEAE Journal
    • /
    • 제11권1호
    • /
    • pp.29-38
    • /
    • 2011
  • This study suggested practical application of climate design on apartment complex with the focus on the use of Cold Air Flow and green building design method. The domestic research on the wind path analysis has been associated since the early 21th century in urban planning and site planning, this initiative study aimed to mitigate the urban heat island effect and to promote the sustainable urban development. It is, however, mostly focused on the flow analysis and heat flow in the urban context, due to the poor application of the wind path analysis in actual planning and design. Special attention is paid to the possibilities of identifying and developing the application methods in relation to Cold Air Flow and building design. This study examined these relations and suggested some trenchant approach to a more comprehensive and efficient use of the wind flow analysis in climate design.

신평년(1991~2020년)에 기반한 우리나라 최근 기후특성과 변화에 관한 연구 (The Recent Climatic Characteristic and Change in the Republic of Korea based on the New Normals (1991~2020))

  • 최홍준;김정용;최영은;허인혜;이태민;김소정;민숙주;이도영;최다솜;성현민;권재일
    • 대기
    • /
    • 제33권5호
    • /
    • pp.477-492
    • /
    • 2023
  • Based on the new climate normals (1991~2020), annual mean, maximum and minimum temperature is 12.5℃, 18.2℃, and 7.7℃, respectively while annual precipitation is 1,331.7 mm, the annual mean wind speed is 2.0 m s-1, and the relative humidity is 67.8% in the Republic of Korea. Compared to 1981~2010 normal, annual mean temperature increased by 0.2℃, maximum and minimum temperatures increased by 0.3℃, while the amount of precipitation (0.7%) and relative humidity (1.1%) decreased. There was no distinct change in annual mean wind speed. The spatial range of the annual mean temperature in the new normals is large from 7.1 to 16.9℃. Annual precipitation showed a high regional variability, ranging from 787.3 to 2,030.0 mm. The annual mean relative humidity decreased at most weather stations due to the rise in temperature, and the annual mean wind speed did not show any distinct difference between the new and old normals. With the addition of a warmer decade (2011~2020), temperatures all increased consistently and in particular, the increase in the maximum temperature, which had not significantly changed in previous decades, was evident. The increasing trend of annual and summer precipitation by the 2010s has disappeared in the new normals. Among extreme climate indices, MxT30 (Daily maximum temperature ≥ 33℃ days), MnT25 (Daily minimum temperature ≥ 25℃ days), and PH30 (1 hour maximum precipitation ≥ 30 mm days) increased while MnT-10 (Daily minimum temperature < -10℃ days) and W13.9 (Daily maximum wind speed ≥ 13.9 m/s days) decreased at a statistically significant level. It is thought that a detailed study on the different trends of climate elements and extreme climate indices by region should be conducted in the future.

지역기후기능을 고려한 주거단지계획기법에 관한 연구 - 바람길을 중심으로 - (A Study on Method of Planning for a Residential Unit under Consideration of Local Climate - Focused on Wind Corridor -)

  • 김태욱;정응호;류지원;박지혜
    • 한국주거학회논문집
    • /
    • 제18권2호
    • /
    • pp.105-112
    • /
    • 2007
  • This research has been implemented based on the area of #369 Dowon-dong, Dalseo-gu, Dae-gu which is considered as a place with satisfactory characteristics for the flow of fresh air into the city. Simulations of the target area both prior to the development plan and after apartment complex blocking were analyzed in regard to blocking planning and pilotis based on the main direction of wind, $90^{\circ}$ (east wind) and $180^{\circ}$ (south wind). In addition, congested wind corridor flow in the target place was identified through a pollution spread simulation according to the wind corridor. Therefore, the flow of wind in the one area is affected by the blocking of the complex and the main direction of the wind. Also blocking, in regard of pilotis, provides a better flow of wind. This study was implemented based on wind formation by apartment complex planning, so further study on the other factors affecting the flow of a wind corridor along with block planning and pilotis need to be carried out. Sustainable environmental factors through analysis of the environmental factors have to be analyzed. Moreover, building and complementing fundamental resources and systematic devices should be supported.

남극 장보고기지 주변 강풍사례 모의 연구 (A Numerical Simulation Study of Strong Wind Events at Jangbogo Station, Antarctica)

  • 권하택;김신우;이솔지;박상종;최태진;정지훈;김성중;김백민
    • 대기
    • /
    • 제26권4호
    • /
    • pp.617-633
    • /
    • 2016
  • Jangbogo station is located in Terra Nova Bay over the East Antarctica, which is often affected by individual storms moving along nearby storm tracks and a katabatic flow from the continental interior towards the coast. A numerical simulation for two strong wind events of maximum instantaneous wind speed ($41.17m\;s^{-1}$) and daily mean wind speed ($23.92m\;s^{-1}$) at Jangbogo station are conducted using the polar-optimized version of Weather Research and Forecasting model (Polar WRF). Verifying model results from 3 km grid resolution simulation against AWS observation at Jangbogo station, the case of maximum instantaneous wind speed is relatively simulated well with high skill in wind with a bias of $-3.3m\;s^{-1}$ and standard deviation of $5.4m\;s^{-1}$. The case of maximum daily mean wind speed showed comparatively lower accuracy for the simulation of wind speed with a bias of -7.0 m/s and standard deviation of $8.6m\;s^{-1}$. From the analysis, it is revealed that the each case has different origins for strong wind. The highest maximum instantaneous wind case is caused by the approach of the strong synoptic low pressure system moving toward Terra Nova Bay from North and the other daily wind maximum speed case is mainly caused by the katabatic flow from the interiors of Terra Nova Bay towards the coast. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation and investigation of high wind events at Jangbogo station. However, additional efforts in utilizing the high resolution terrain is required to reduce the simulation error of high wind mainly caused by katabatic flow, which is received a lot of influence of the surrounding terrain.

Climate Factors and Their Effects on the Prevalence of Rhinovirus Infection in Cheonan, Korea

  • Lim, Dong Kyu;Jung, Bo Kyeung;Kim, Jae Kyung
    • 한국미생물·생명공학회지
    • /
    • 제49권3호
    • /
    • pp.425-431
    • /
    • 2021
  • The use of big data may facilitate the recognition and interpretation of causal relationships between disease occurrence and climatic variables. Considering the immense contribution of rhinoviruses in causing respiratory infections, in this study, we examined the effects of various climatic variables on the seasonal epidemiology of rhinovirus infections in the temperate climate of Cheonan, Korea. Trends in rhinovirus detection were analyzed based on 9,010 tests performed between January 1, 2012, and December 31, 2018, at Dankook University Hospital, Cheonan, Korea. Seasonal patterns of rhinovirus detection frequency were compared with the local climatic variables for the same period. Rhinovirus infection was the highest in children under 10 years of age, and climatic variables influenced the infection rate. Temperature, wind chill temperature, humidity, and particulate matter significantly affected rhinovirus detection. Temperature and wind chill temperature were higher on days on which rhinovirus infection was detected than on which it was not. Conversely, particulate matter was lower on days on which rhinovirus was detected. Atmospheric pressure and particulate matter showed a negative relationship with rhinovirus detection, whereas temperature, wind chill temperature, and humidity showed a positive relationship. Rhinovirus infection was significantly related to climatic factors such as temperature, wind chill temperature, atmospheric pressure, humidity, and particulate matter. To the best of our knowledge, this is the first study to find a relationship between daily temperatures/wind chill temperatures and rhinovirus infection over an extended period.

지역 기후 앙상블 예측을 활용한 한반도 풍력 에너지의 시·공간적 변동성 연구 (Variability of Wind Energy in Korea Using Regional Climate Model Ensemble Projection)

  • 김유미;김연희;김나윤;임윤진;김백조
    • 대기
    • /
    • 제26권3호
    • /
    • pp.373-386
    • /
    • 2016
  • The future variability of Wind Energy Density (WED) over the Korean Peninsula under RCP climate change scenario is projected using ensemble analysis. As for the projection of the future WED, changes between the historical period (1981~2005) and the future projection (2021~2050) are examined by analyzing annual and seasonal mean, and Coefficient of Variation (CV) of WED. The annual mean of WED in the future is expected to decrease compared to the past ones in RCP 4.5 and RCP 8.5 respectively. However, the CV is expected to increase in RCP 8.5. WEDs in spring and summer are expected to increase in both scenarios RCP 4.5 and RCP 8.5. In particular, it is predicted that the variation of CV for WED in winter is larger than other seasons. The time series of WED for three major wind farms in Korea exhibit a decrease trend over the future period (2021~2050) in Gochang for autumn, in Daegwanryeong for spring, and in Jeju for autumn. Through analyses of the relationship between changes in wind energy and pressure gradients, the fact that changes in pressure gradients would affect changes in WED is identified. Our results can be used as a background data for devising a plan to develop and operate wind farm over the Korean Peninsula.

기후변화 시나리오를 활용한 한반도 미래 풍력에너지의 시공간적 변동성 전망 (Spatio-temporal variability of future wind energy over the Korean Peninsular using Climate Change Scenarios)

  • 김유미;임윤진;이현경;최병철
    • 대한지리학회지
    • /
    • 제49권6호
    • /
    • pp.833-848
    • /
    • 2014
  • 풍력발전단지의 신규 개발과 안정적인 운영 계획 수립을 위해 기후변화에 따른 미래 풍력에너지의 변동성 정보를 파악하는 것이 필요하다. 본 연구는 IPCC 5차 보고서에서 새롭게 도입된 대표농도경로(Representative Concentration Pathway)를 적용한 기후변화 시나리오 자료를 활용하여 2006년부터 2040년까지의 가까운 미래에 대한 풍력에너지(풍력에너지밀도와 잠재전력생산량)의 시 공간적 변동성을 분석하고자 한다. 사용된 기후변화 시나리오는 지역기후모델 HadGEM3-RA를 이용해 생산된 RCP2.6과 8.5자료이다. 시나리오 생산의 기반이 된 지역기후모델을 과거기간에 대하여 ECMWF의 ERA-interim 재분석자료와 비교분석한 결과, 지역 기후모델은 풍력에너지를 육지에서는 과소, 바다에서는 과대 모의하였다. 그리고 변동성 역시 육지에서 과소, 바다에서는 과대 모의하였다. 미래 풍력에너지는 RCP 시나리오별로 다소 차이가 나타나지만 육지에서 증가, 바다에서는 감소할 것으로 예측되었으며 고도가 높은 산지 및 해안지역에서 미래 풍력에너지의 변동성이 증가할 것으로 분석되었다. 지역별 풍력에너지밀도 분석결과 제주에서 크게 증가할 것으로 예상되었으며 변동성도 크게 증가하였다. 미래 풍력에너지의 변동은 주변 기상장의 변화와 연관 지어 해석이 가능하였으나 큰 변동성으로 인한 불확실성이 증가할 것으로 판단할 수 있다. 본 연구를 통해서 분석된 결과는 미래 에너지 수급 및 활용계획 수립에 있어 기초자료로 활용될 수 있으리라 판단한다.

  • PDF