• Title/Summary/Keyword: Wind blades

Search Result 316, Processing Time 0.023 seconds

Investigation on Research Trends for Separation of Wind Turbine Blade (풍력 블레이드 분리를 위한 연구 동향 분석)

  • Wooseong Jeong;Hyunbumm Park
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.68-74
    • /
    • 2023
  • Research is being actively conducted to increase energy production by increasing the length of wind turbine blades. However, it is difficult to manufacture and transport large-scale blades. Various studies are being conducted on the concept of separate wind turbine blades considering transportation methods and maintenance. In this study, various methods of dividing blades and assembling the divided blades were reviewed. The position of the division when the blades are divided was analyzed.

Flutter study of flapwise bend-twist coupled composite wind turbine blades

  • Farsadi, Touraj;Kayran, Altan
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.267-281
    • /
    • 2021
  • Bending-twisting coupling induced in big composite wind turbine blades is one of the passive control mechanisms which is exploited to mitigate loads incurred due to deformation of the blades. In the present study, flutter characteristics of bend-twist coupled blades, designed for load alleviation in wind turbine systems, are investigated by time-domain analysis. For this purpose, a baseline full GFRP blade, a bend-twist coupled full GFRP blade, and a hybrid GFRP and CFRP bend-twist coupled blade is designed for load reduction purpose for a 5 MW wind turbine model that is set up in the wind turbine multi-body dynamic code PHATAS. For the study of flutter characteristics of the blades, an over-speed analysis of the wind turbine system is performed without using any blade control and applying slowly increasing wind velocity. A detailed procedure of obtaining the flutter wind and rotational speeds from the time responses of the rotational speed of the rotor, flapwise and torsional deformation of the blade tip, and angle of attack and lift coefficient of the tip section of the blade is explained. Results show that flutter wind and rotational speeds of bend-twist coupled blades are lower than the flutter wind and rotational speeds of the baseline blade mainly due to the kinematic coupling between the bending and torsional deformation in bend-twist coupled blades.

Fabrication and Electrical Properties of Blades for Wind Turbine System (풍력발전기용 블레이드의 제작 및 전기적 특성)

  • Lee, Jong-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.345-346
    • /
    • 2006
  • This study proposes a development of blades for the 6W class small wind turbine system, which is applicable to relatively low speed region like Korea, and very easy to pitch control. The materials of the blades was used for the still. Electrical properties of blades improved by increasing with wind speed. The maximum output showed at $10^{\circ}$ of pitch angle and about 3.8[W] at 5.5[m/s] of wind speed.

  • PDF

The Study of Wind Blower Characteristics Using a Blade Type Corona Motor (코로나 모터를 이용한 송풍장치의 특성 연구)

  • Jung, Jae-Seung;Kim, Hyung-Pyo;Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.76-81
    • /
    • 2013
  • In this paper, a corona motor with blade type electrodes has been employed as a wind blower. The rotation speed was influenced significantly by the polarity of applied voltage and the number of blades. Therefore the effect of polarity of applied voltage and the number of blades on the electrical and mechanical fundamental properties of corona motor were investigated experimentally. The rotation speed decreased for increasing of number of blades, because the mass of blades increased. But the amount of air blow increased despite decreasing of the rotation speed, because air volume is not only influenced by rotation speed but also the number of blades and ionic wind which generated between blade tips and a induction electrode. Although space occupied by blades of the corona motor is smaller than the whole area of the blast pipe, wind rises a whole range of a wind blower for such reasons.

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.

The wind tunnel measuring methods for wind turbine rotor blades

  • Vardar, Ali;Eker, Bulent
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.305-316
    • /
    • 2004
  • In this study, a wind tunnel, that has been developed for experiments of wind turbine rotor blades, has been considered. The deviations of the measurements have been examined after this wind tunnel had been introduced and the measurements on it had been explained. Two different wind turbine rotor blades miniatures have been used for getting better results from the experiments. The accuracy of measurements have been experimented three times repetitively and examined statistically. As a result, wind speed values which this type of wind tunnel and wind turbine rotors need for starting, wind speed in the tunnel, temperature and moisture values, the number of rotor's revolution, and the voltage that is produced in 102 ${\Omega}$ resistance and current values have been determined to be fixed by measurements used. This type of wind tunnel and wind turbine rotor' performance difference and the difference of revolution figures have been determined to be fixed by measurements used.

Stochastic modelling fatigue crack evolution and optimum maintenance strategy for composite blades of wind turbines

  • Chen, Hua-Peng;Zhang, Chi;Huang, Tian-Li
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.703-712
    • /
    • 2017
  • The composite blades of offshore wind turbines accumulate structural damage such as fatigue cracking due to harsh operation environments during their service time, leading to premature structural failures. This paper investigates various fatigue crack models for reproducing crack development in composite blades and proposes a stochastic approach to predict fatigue crack evolution and to analyse failure probability for the composite blades. Three typical fatigue models for the propagation of fatigue cracks, i.e., Miner model, Paris model and Reifsnider model, are discussed to reproduce the fatigue crack evolution in composite blades subjected to cyclical loadings. The lifetime probability of fatigue failure of the composite blades is estimated by stochastic deterioration modelling such as gamma process. Based on time-dependent reliability analysis and lifecycle cost analysis, an optimised maintenance policy is determined to make the optimal decision for the composite blades during the service time. A numerical example is employed to investigate the effectiveness of predicting fatigue crack growth, estimating the probability of fatigue failure and evaluating an optimal maintenance policy. The results from the numerical study show that the stochastic gamma process together with the proper fatigue models can provide a useful tool for remaining useful life predictions and optimum maintenance strategies of the composite blades of offshore wind turbines.

Numerical Investigation of Large-capacity Wind Turbine Wake Impact on Drone system during Maintenance (수치해석 활용 대용량 풍력발전시스템 유지보수 시 타워 및 블레이드 후류에 따른 드론 블레이드 간섭 연구)

  • Jun-Young Lee;Hyun-Choi Jung;Jae-ho Jeong
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.100-108
    • /
    • 2023
  • The aim of this study is to develop guidelines for predicting interference between drones and wakes during non-destructive blade inspections in wind power systems. The wake generated by wind towers and blades can affect the stability of drone flights, necessitating the establishment of guidelines to ensure safe and efficient inspections. In order to predict the interference between drones and blades, environmental variables must be considered, including quantification of turbulence intensity in the wake generated by the tower and blades, as well as determining the appropriate distance between the drone and the tower/blades for flight stability. To achieve this, computational fluid dynamics (CFD) analysis was performed using cross-sectional geometries corresponding to the main wind turbine blade and tower span locations. Based on the CFD analysis results, a safe flight path for drones is proposed, which minimizes the risk of collision and interference with towers and blades during maintenance operations of wind power systems. Implementation of the proposed guidelines is expected to enhance the safety and efficiency of maintenance work.

Along-wind simplified analysis of wind turbines through a coupled blade-tower model

  • Spagnoli, Andrea;Montanari, Lorenzo
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.589-608
    • /
    • 2013
  • A model is proposed to analyse the along-wind dynamic response of upwind turbines with horizontal axis under service wind conditions. The model takes into account the dynamic coupling effect between rotor blades and supporting tower. The wind speed field is decomposed into a mean component, accounting for the well-known wind shear effect, and a fluctuating component, treated through a spectral approach. Accordingly, the so-called rotationally sampled spectra are introduced for the blades to account for the effect of their rotating motion. Wind forces acting on the rotor blades are calculated according to the blade element momentum model. The tower shadow effect is also included in the present model. Two examples of a large and medium size wind turbines are modelled, and their dynamic response is analysed and compared with the results of a conventional static analysis.

Output Characteristics of Small Wind Power Generator Applying Multi-Layered Blade (다층형 블레이드를 적용한 소형 풍력발전기의 출력특성)

  • Lee, Min-Gu;Park, Wal-Seo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.663-667
    • /
    • 2017
  • Fuel depletion and environmental problems due to the use of fossil fuels have been worsening of late, and the development of alternative energy sources is urgently required to address these problems. Among the alternative energy sources, wind energy is attracting much attention as a clean energy source, because it can be used unlimitedly without any pollutant emissions. In wind power generation, wind energy is converted to kinetic energy through rotor blades and this kinetic energy is converted to electric energy through generators. The design and manufacturing of the blades, which are the major parts of wind power generators, are very important, but South Korea still lacks the requisite basic data and key technologies and, therefore, has to import the blades from overseas. In this study, multi-layered blades capable of generating power at low wind speeds were applied to a small wind power generator and the output characteristics of the generator according to the wind speed and the number of blades were analyzed. As a result, at the maximum wind speed of 8m/s, the application of three blades achieved up to 33% and 18% higher generator output voltage, up to 33% and 15% higher generator output current, and up to 23% and 13% higher generator RPM than the application of one or two blades, respectively. In this study, the application of multi-layered blades to a small wind power generator was shown to improve the output characteristics of the generator and make the collection of electric energy possible even at low wind speeds.