• 제목/요약/키워드: Wind and current force

검색결과 114건 처리시간 0.024초

LNG선의 계류 안전성의 평가에 관한 연구 (A Study on the Evaluation of Mooring Safety of LNG Ships)

  • 김세원
    • 한국항해학회지
    • /
    • 제24권5호
    • /
    • pp.373-383
    • /
    • 2000
  • The ship’s safe mooring stability is a principles for the safe cargo handling works at the mooring berth. Today numerous standards, guidelines and recommendations concerning mooring practices, fittings and equipments exist throughout the worldwide maritime industries. In recently, the mooring facilities were constructed as dolphin types at the open sea area apart far from shoreside instead of enclosed coastline area in accordance with increasing ship’s size and for preventing environmental pollution. Therefore the exciting wave condition must be considered as a basic environmental criteria with the wind force and current force for all of the mooring ships at the sea berth facilities. In this study, this added wave force as one of the environmental external forces by using the theoretical formula was applied to the LNG ship in Pyeongtaeg harbor needed the special mooring stability of the sea berth. Through this research, it can be confirmed that wave force is the very important factor in the mooring force and the strength of wave force works much more in the full laden condition than in the lightship condition. And also the wave force changes to non-linear states according to the wave frequency and wave length. In addition, the maximum limit criteria of environmental force of prohibiting the entering ship on the berth and loading works controlled by the port authority concerned of Pyeongtaeg port fully satisfies the condition of the mooring limit force recommended by OCIMF that the safe permitted force of the mooring line have to be within 55 % of MBL.

  • PDF

Behaviour and design of guyed pre-stressed concrete poles under downbursts

  • Ibrahim, Ahmed M.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • 제29권5호
    • /
    • pp.339-359
    • /
    • 2019
  • Pre-stressed concrete poles are among the supporting systems used to support transmission lines. It is essential to protect transmission line systems from harsh environmental attacks such as downburst wind events. Typically, these poles are designed to resist synoptic wind loading as current codes do not address high wind events in the form of downbursts. In the current study, the behavior of guyed pre-stressed concrete Transmission lines is studied under downburst loads. To the best of the authors' knowledge, this study is the first investigation to assess the behaviour of guyed pre-stressed concrete poles under downburst events. Due to the localized nature of those events, identifying the critical locations and parameters leading to peak forces on the poles is a challenging task. To overcome this challenge, an in-house built numerical model is developed incorporating the following: (1) a three-dimensional downburst wind field previously developed and validated using computational fluid dynamics simulations; (2) a computationally efficient analytical technique previously developed and validated to predict the non-linear behaviour of the conductors including the effects of the pretension force, sagging, insulator's stiffness and the non-uniform distribution of wind loads, and (3) a non-linear finite element model utilized to simulate the structural behaviour of the guyed pre-stressed concrete pole considering material nonlinearity. A parametric study is conducted by varying the downbursts locations relative to the guyed pole while considering three different span values. The results of this parametric study are utilized to identify critical downburst configurations leading to peak straining actions on the pole and the guys. This is followed by comparing the obtained critical load cases to new load cases proposed to ASCE-74 loading committee. A non-linear failure analysis is then conducted for the three considered guyed pre-stressed concrete transmission line systems to determine the downburst jet velocity at which the pole systems fail.

Numerical characterization of real railway overhead cables

  • Sanchez-Rebollo, Cristina;Velez, Enrique;Jimenez-Octavio, Jesus R.
    • Wind and Structures
    • /
    • 제21권1호
    • /
    • pp.105-117
    • /
    • 2015
  • This paper presents a numerical characterization of real railway overhead cables based on computational fluid dynamics (CFD). Complete analysis of the aerodynamic coefficients of this type of cross section yields a more accurate modelling of pressure loads acting on moving cables than provided by current approaches used in design. Thus, the characterization of certain selected commercial cables is carried out in this work for different wind speeds and angles of attack. The aerodynamic lift and drag coefficients are herein determined for two different types of grooved cables, which establish a relevant data set for the railway industry. Finally, the influence of this characterization on the fluid-structure interaction (FSI) is proved, the static behavior of a catenary system is studied by means of the finite element method (FEM) in order to analyze the effect of different wind angles of attack on the stiffness distribution.

대형 선박의 계류한계에 대한 연구 (A Study on Mooring Limit Analysis of Large Ship)

  • 김원욱;이성욱;배준영
    • 수산해양교육연구
    • /
    • 제29권2호
    • /
    • pp.415-421
    • /
    • 2017
  • This study is aiming to find one of working conditions for loading and unloading a large ship at game port. Firstly, for dynamic analysis of the moored ships, the motion characteristics of ship according to loading condition are figured out. The motion characteristics of ship is related to environmental factors such as current, wind, mooring line, fender and etc. As a result, it is ascertained through numerical simulation using the AQUA MARINE developed by ANSYS INC. This study might contribute to make a new method of mooring stability of target ship.

차세대 고속전철 팬터그래프 팬 헤드의 압상력 변화 해석 (Analysis of Change of Contact Force in the Pantograph Pan Head of Next Generation High Speed Train)

  • 강형민;권혁빈
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.35-40
    • /
    • 2017
  • In order to investigate the change of contact force of pantograph pan head due to the change of aerodynamic force, three dimensional flow around the pan head were calculated. For this, the aerodynamic modeling of pan head of CX pantograph was performed and the standard deviation of the contact force of the simulation results were compared with those of the experimental results of wind tunnel tests. From the comparison, it was confirmed that the current grid system and the numerical methodologies can be utilized to calculate the aerodynamic characteristics of the pantograph pan head. By using these grid system and the methodologies, the standard deviations of the contact force of pan head were calculated with velocities as 200, 250, 300, 350, and 400 km/h. The maximum standard deviation of the aerodynamic contact force of pan head was 92 N at 400 km/h and statistical minimum contact force was more than 0 N. Therefore, it was confirmed that and the pan head of CX pantograph was statistically contacted with the catenary system with the train speed of 350 km/h though the aerodynamic contact force was changed.

A Study on Loading Arm Envelope and Alarm Setting according to Ship Movement

  • Choi, Byoung-Yeol;Jo, Hyo-Jae;Choi, Han-Sik;Choi, Dong-Eon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.115-123
    • /
    • 2018
  • This study was carried using the new approach method to design appropriately the Loading Arm length and the alarm setting according to ship movements on Loading and Unloading marine Berth. The quasi-static mooring analysis was performed to estimate 110,000DWT ship's movements based on environmental conditions such as wind, current and wave. The mooring motion of the ship is very important to determine the loading arm scope, and in this case, the operation condition is performed on the ship without considering the damaged condition of the mooring line because the ship movement in case of damage is larger than intact, and all operations are stopped, the loading arm being released due to control system. From the result of mooring analysis, motion displacements, velocities and accelerations were simulated. They were used to simulate the maximum drifting speeds and distances. The maximum drifting speeds were checked to be satisfied within drifting speed limits. The total maximum drifting distances were simulated with alarm steps of the new approach method. Finally, the loading arm envelopes using the total maximum drifting distances were completed. Therefore, it was confirmed that the new approach method for loading arm envelopes and alarm settings was appropriate from the above results. In the future, it will be necessary to perform the further advanced dynamic mooring analysis instead of the quasi-static mooring analysis and to use the precise computer program analysis for various environments and ship movement conditions.

바지선 구조변경이 계류력 변화와 안정성에 미치는 영향 (Changes of Mooring Force due to Structural Modification of a Barge Ship)

  • 박정홍;김광훈;문병영;장택수
    • 한국유체기계학회 논문집
    • /
    • 제14권5호
    • /
    • pp.48-54
    • /
    • 2011
  • Structural modifications of a ship may cause a fatal accident such as sinking and wrecking of ship. Especially, barge ship can be easily reconstructed to load more bulk cargo. In this study, for a real accident case, change of mooring force due to structural modification was analyzed to evaluate accident risk. A two dimensional dynamic model for the barge ship was constructed to compute mooring forces with related to floating motion. The equation of motion was established in Matlab code and buoyancy was calculated by using direct integration of submerged volume. The results showed that wind force, current force, and mooring force after rebuilding was approximately 4.3 kN, 14 kN, 1,561 kN respectively. The maximum force of mooring force according to the length of mooring cable were 1,614 kN at 30 m of mooring cable. Thus, an arbitrary modification of ship lead instability and unreliable result so that illegal rebuilding of ship should be avoided.

광양 제품부두의 계류안정성 해석 (Dynamic Analysis for the Mooring Safety at KwangYang Port)

  • 김영복;정태권;김세원;김중엽;김영훈
    • 한국해안·해양공학회논문집
    • /
    • 제22권6호
    • /
    • pp.423-428
    • /
    • 2010
  • 본 계류안정성 해석은 광양만 부두의 포항제철 제품 및 고철부두에 대한 적정 선박을 선정하는 방법의 하나로서 수행되었다. 계류안정성 해석을 위해서는 우선 제품부두에 정박하는 기준이 되는 대상선박을 선정하여 각 선박의 운동특성을 파악하고, 이것을 바탕으로 각 대상 선박의 유체력을 계산한 후 파랑, 바람 및 조류를 고려하여 안벽에 계류된 선박의 계류안정성해석을 수행하였다. 이를 통해 광양 제품부두에서의 계류안정성을 보장하는 적정한 선박 선정기준을 개선하고자 하였다.

부산항과 감천항 방파제 인접 항로에서 선체에 작용하는 횡압류 현상에 관한 연구 (A Study on the Lateral Force Acting on a Ship in the adjacent Waterway of Busan and Gamcheon Breakwater)

  • 이윤석;김철승;공길영
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 춘계학술대회 논문집
    • /
    • pp.311-316
    • /
    • 2004
  • 항만을 출입항하는 선박의 통항 안전을 확보하기 위해서는 방파제와 같은 항만 시설물의 설계 또는 배치시에는 우선적으로 선박의 조종 성능을 감안하여 교통 흐름이 원활하도록 적정한 항로를 지정하여야 한다. 이 연구에서는 부산항 및 감천항 입항을 위해 방파제 인접 항로에서 일정 침로로 접근하는 컨테이너 선박이 외력인 바람, 조류, 파랑에 의해 선체에 발생하는 횡압류 및 회두 현상을 정량적으로 분석하여, 선속에 따라 외력을 상쇄하기 위해 취해야 할 대응타각을 산출한다. 또한 향후 방파제 설계 및 배치시 고려해야 될 외력하의 선박의 조종 성능 요소를 제안함과 동시에 방파제의 설계와 항로 배치와의 관계에 대하여 고찰한다.

  • PDF

Application of tuned liquid dampers in controlling the torsional vibration of high rise buildings

  • Ross, Andrew S.;El Damatty, Ashraf A.;El Ansary, Ayman M.
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.537-564
    • /
    • 2015
  • Excessive motions in buildings cause occupants to become uncomfortable and nervous. This is particularly detrimental to the tenants and ultimately the owner of the building, with respect to financial considerations. Serviceability issues, such as excessive accelerations and inter-story drifts, are more prevalent today due to advancements in the structural systems, strength of materials, and design practices. These factors allow buildings to be taller, lighter, and more flexible, thereby exacerbating the impact of dynamic responses. There is a growing need for innovative and effective techniques to reduce the serviceability responses of these tall buildings. The current study considers a case study of a real building to show the effectiveness and robustness of the TLD in reducing the coupled lateral-torsional motion of this high-rise building under wind loading. Three unique multi-modal TLD systems are designed specifically to mitigate the torsional response of the building. A procedure is developed to analyze a structure-TLD system using High Frequency Force Balance (HFFB) test data from the Boundary Layer Wind Tunnel Laboratory (BLWTL) at the University of Western Ontario. The effectiveness of the unique TLD systems is investigated. In addition, a parametric study is conducted to determine the robustness of the systems in reducing the serviceability responses. Three practical parameters are varied to investigate the robustness of the TLD system: the height of water inside the tanks, the amplitude modification factor, and the structural modal frequencies.