• 제목/요약/키워드: Wind Turbulence

검색결과 614건 처리시간 0.024초

와동 발생기를 이용한 자외선 살균 시스템 성능 향상에 관한 연구 (A Study on Enhancement of UV Disinfection System Performance by the Vortex Generator)

  • 김봉환;안국찬;김동진
    • 한국안전학회지
    • /
    • 제22권1호
    • /
    • pp.24-29
    • /
    • 2007
  • The effectiveness of a UV(ultra violet) disinfection system depends on the characteristics of the waste water, flow conditions, the intensity of UV radiation, the amount of time the microorganisms are exposed to the radiation, and the reactor configuration. The wast water flow conditions are important factors in the design of UV disinfection system from the point of enhancement view of UV disinfection. The turbulent energy intensity in the wake by the vortex shedding are effective for UV radiation. Therewith the effectiveness of vortex generator is considered as a enhancement of UV disinfection. The experimental results presented give important evidences and explain that it is possible to predict UV disinfection performance based on flow experiments. An experimental investigation of two types of the vortex generator is presented. The qualitative and quantitative evaluations of the wake are made by flow visualization using smoke wire method and the measurement of vortex frequencies in the wind tunnel. From the experiment, following results were obtained that the delta wing type vortex generator is more effective than circular type because of the higher vortex frequencies and the smaller drag.

충돌분사의 충돌각 변화에 따른 난류특성의 실험적 연구 (An Experimental Study on the Turbulence Characteristics of a Cross Jet with Respect to Cross Angle Variations)

  • 노병준;최진철;강신재
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.991-998
    • /
    • 1989
  • 본 연구에서는 충돌각을 변수로 한 실험적 연구를 수행하기 위하여 여타의 변수를 고정하였으며, 유속은 R$_{e}$=5.2*$10^{4}$의 결과를 제시하였다.

램제트 초음속 흡입구 내부 유동 특성 (Internal Flow characteristics of Ramjet Supersonic Intake)

  • 이형진;김세환;정인석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.331-334
    • /
    • 2011
  • 램제트 엔진의 성능은 초음속 흡입구의 성능과 밀접한 연관이 있다. 초음속 흡입구 내부 유동 특성을 관찰하기 위해 실험적/전산해석적 연구를 수행하였다. 자발 시동이 가능한 2차원 실험 모델을 설계 제작하고 마하 2.5 초음속 풍동을 이용한 실험적 연구와 Menter's SST 난류 모델과 RANS 방정식에 기본한 전산해석 결과로부터 내부 유동 특성을 정리하였다. 흡입구의 안정 작동 조건에서의 의사충격파(Pseudo-shock wave)와 불안정 작동 조건의 버즈 현상에 대해 자세한 가시화 결과를 제시하였다.

  • PDF

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • 제17권4호
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.

Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow

  • Chen, Weilin;Ji, Chunning;Alam, Md. Mahbub;Xu, Dong
    • Wind and Structures
    • /
    • 제29권1호
    • /
    • pp.43-53
    • /
    • 2019
  • Vortex-induced vibration of three circular cylinders (each of diameter D) in an equilateral triangular arrangement is investigated using the immersed boundary method. The cylinders, with one placed upstream and the other two side-by-side downstream, are free to vibrate in the cross-flow direction. The cylinder center-to-center spacing L is adopted as L/D = 2.0. Other parameters include the Reynolds number Re = 100, mass ratio $m^*=2.0$, reduced velocity $U_r=2{\sim}15$ and damping ratio ${\zeta}=0$. Cylinder vibration responses are dependent on $U_r$ and classified into five regimes, i.e. Regime I ($U_r{\leq}3.2$), Regime II ($3.2<U_r{\leq}5.0$), Regime III ($5.0<U_r{\leq}6.4$), Regime IV ($6.4<U_r{\leq}9.2$) and Regime V ($U_r>9.2$). Different facets of vibration amplitude, hydrodynamic forces, wake patterns and displacement spectra are extracted and presented in detail for each regime.

Nanofluid flow and heat transfer from heated square cylinder in the presence of upstream rectangular cylinder under Couette-Poiseuille flow

  • Sharma, Swati;Maiti, Dilip K.;Alam, Md. Mahbub;Sharma, Bhupendra K.
    • Wind and Structures
    • /
    • 제29권1호
    • /
    • pp.65-75
    • /
    • 2019
  • A heated square cylinder (with height $A^*$) is kept parallel to the cold wall at a fixed gap height $0.5A^*$ from the wall. Another adiabatic rectangular cylinder (of same height $A^*$ and width $0.5A^*$) is placed upstream in an inline tandem arrangement. The spacing between the two cylinders is fixed at $3.0A^*$. The inlet flow is taken as Couette-Poiseuille flow based non-linear velocity profile. The conventional fluid (also known as base fluid) is chosen as water (W) whereas the nanoparticle material is selected as $Al_2O_3$. Numerical simulations are performed by using SIMPLE algorithm based Finite Volume approach with staggered grid arrangement. The dependencies of hydrodynamic and heat transfer characteristics of the cylinder on non-dimensional parameters governing the nanofluids and the fluid flow are explored here. A critical discussion is made on the mechanism of improvement/reduction (due to the presence of the upstream cylinder) of heat transfer and drag coefficient, in comparison to those of an isolated cylinder. It is observed that the heat transfer increases with the increase in the non-linearity in the incident velocity profile at the inlet. For the present range studied, particle concentration has a negligible effect on heat transfer.

Comparison of aerodynamic performances of various airfoils from different airfoil families using CFD

  • Kaya, Mehmet Numan;Kok, Ali Riza;Kurt, Huseyin
    • Wind and Structures
    • /
    • 제32권3호
    • /
    • pp.239-248
    • /
    • 2021
  • In this study, three airfoil families, NACA, FX and S, in each case three from each series with different shapes were investigated at different angles of attack using Computational Fluid Dynamics (CFD) method. To verify the CFD model, simulation results of the NACA 0012 airfoil was compared against the available experimental data and k-ω SST was used as the turbulence model. Lift coefficients, lift to drag ratios and pressure distributions around airfoils were obtained from the CFD simulations and compared each other. The simulations were performed at three Reynolds numbers, Re=2×105, 1×106and 2×106, and angle of attack was varied between -6 and 12 degrees. According to the results, similar lift coefficient values were obtained for symmetric airfoils reaching their maximum values at similar angles of attack. Maximum lift coefficients were obtained for FX 60-157 and S 4110 airfoils having lift coefficient values around 1.5 at Re=1×106 and 12 degrees of angle of attack. Flow separation occurred close to the leading edge of some airfoils at higher angles of attack, while some other airfoils were more successful in keeping the flow attached on the surface.

Prediction of scour around single vertical piers with different cross-section shapes

  • Bordbar, Amir;Sharifi, Soroosh;Hemida, Hassan
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.43-58
    • /
    • 2021
  • In the present work, a 3D numerical model is proposed to study local scouring around single vertical piers with different cross-section shapes under steady-current flow. The model solves the flow field and sediment transport processes using a coupled approach. The flow field is obtained by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations in combination with the k-ω SST turbulence closure model and the sediment transport is considered using both bedload and suspended load models. The proposed model is validated against the empirical measurements of local scour around single vertical piers with circular, square, and diamond cross-section shapes obtained from the literature. The measurement of scour depth in equilibrium condition for the simulations reveal the differences of 4.6%, 6.7% and 13.1% from the experimental measurements for the circular, square, and diamond pier cases, respectively. The model displayed a remarkable performance in the prediction of scour around circular and square piers where horseshoe vortices (HSVs) have a leading impact on scour progression. On the other hand, the maximum deviation was found in the case of the diamond pier where HSVs are weak and have minimum impact on the formation of local scour. Overall, the results confirm that the prediction capability of the present model is almost independent of the strength of the formed HSVs and pier cross-section shapes.

A Brief Introduction of Current and Future Magnetospheric Missions

  • Yukinaga Miyashita
    • 우주기술과 응용
    • /
    • 제3권1호
    • /
    • pp.1-25
    • /
    • 2023
  • In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.

수치해석을 이용한 이어도 종합해양과학기지의 해상풍 관측 오차 연구 (Numerical Study on the Observational Error of Sea-Surface Winds at leodo Ocean Research Station)

  • 임진우;이경록;심재설;김종암
    • 한국해안해양공학회지
    • /
    • 제18권3호
    • /
    • pp.189-197
    • /
    • 2006
  • 수치해석을 통하여 이어도 종합해양과학기지 구조물이 대기 유동에 미치는 영향을 분석하였고, 이 결과를 바탕으로 과학기지에 설치된 풍속센서에서의 측정값 오차를 평가하는 연구를 수행하였다. 과학기지 형상을 3차원으로 모델링하였고 수치해석을 위한 격자를 생성하여, Navier-Stokes 방정식 및 난류모델을 적용하여 수치해석을 수행하였다. 선정된 자유류의 풍속과 풍향 조건에 대하여 과학기지 구조물에 의해 변화된 유동장을 계산하고, 실제 풍속센서가 설치된 위치에서의 풍속/풍향 정보와 자유류를 비교하였다. 이를 통하여 자유류 방향 및 측정 위치에 따른 데이터의 정확도와 신뢰할 수 있는 데이터 범위를 알아보았다. 본 연구 결과로 관측된 해상풍 데이터의 구조물 간섭에 의한 오차 범위를 정량적으로 파악할 수 있었으며, 과학기지가 위치한 지점의 정확한 해상풍 데이터 제공을 위한 기초 자료로 활용될 것으로 기대된다.